Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,711 Bytes
8889bbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import numpy as np
import mlx.core as mx
import mlx.nn as nn
from huggingface_hub import snapshot_download
from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizer
from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Union
import time
from mlx_lm import load, generate
from mlx_lm.utils import generate_step
from .base_engine import BaseEngine
from ..configs import (
MODEL_PATH,
)
def generate_string(
model: nn.Module,
tokenizer: PreTrainedTokenizer,
prompt: str,
temp: float = 0.0,
max_tokens: int = 100,
verbose: bool = False,
formatter: Callable = None,
repetition_penalty: Optional[float] = None,
repetition_context_size: Optional[int] = None,
stop_strings: Optional[Tuple[str]] = None
):
prompt_tokens = mx.array(tokenizer.encode(prompt))
stop_strings = stop_strings if stop_strings is None or isinstance(stop_strings, tuple) else tuple(stop_strings)
assert stop_strings is None or isinstance(stop_strings, tuple), f'invalid {stop_strings}'
tic = time.perf_counter()
tokens = []
skip = 0
REPLACEMENT_CHAR = "\ufffd"
for (token, prob), n in zip(
generate_step(
prompt_tokens,
model,
temp,
repetition_penalty,
repetition_context_size,
),
range(max_tokens),
):
if token == tokenizer.eos_token_id:
break
if n == 0:
prompt_time = time.perf_counter() - tic
tic = time.perf_counter()
tokens.append(token.item())
if stop_strings is not None:
token_string = tokenizer.decode(tokens).replace(REPLACEMENT_CHAR, "")
if token_string.strip().endswith(stop_strings):
break
token_string = tokenizer.decode(tokens).replace(REPLACEMENT_CHAR, "")
return token_string
def generate_yield_string(
model: nn.Module,
tokenizer: PreTrainedTokenizer,
prompt: str,
temp: float = 0.0,
max_tokens: int = 100,
verbose: bool = False,
formatter: Callable = None,
repetition_penalty: Optional[float] = None,
repetition_context_size: Optional[int] = None,
stop_strings: Optional[Tuple[str]] = None
):
"""
Generate text from the model.
Args:
model (nn.Module): The language model.
tokenizer (PreTrainedTokenizer): The tokenizer.
prompt (str): The string prompt.
temp (float): The temperature for sampling (default 0).
max_tokens (int): The maximum number of tokens (default 100).
verbose (bool): If ``True``, print tokens and timing information
(default ``False``).
formatter (Optional[Callable]): A function which takes a token and a
probability and displays it.
repetition_penalty (float, optional): The penalty factor for repeating tokens.
repetition_context_size (int, optional): The number of tokens to consider for repetition penalty.
"""
if verbose:
print("=" * 10)
print("Prompt:", prompt)
stop_strings = stop_strings if stop_strings is None or isinstance(stop_strings, tuple) else tuple(stop_strings)
assert stop_strings is None or isinstance(stop_strings, tuple), f'invalid {stop_strings}'
prompt_tokens = mx.array(tokenizer.encode(prompt))
tic = time.perf_counter()
tokens = []
skip = 0
REPLACEMENT_CHAR = "\ufffd"
for (token, prob), n in zip(
generate_step(
prompt_tokens,
model,
temp,
repetition_penalty,
repetition_context_size,
),
range(max_tokens),
):
if token == tokenizer.eos_token_id:
break
# if n == 0:
# prompt_time = time.perf_counter() - tic
# tic = time.perf_counter()
tokens.append(token.item())
# if verbose:
# s = tokenizer.decode(tokens)
# if formatter:
# formatter(s[skip:], prob.item())
# skip = len(s)
# elif REPLACEMENT_CHAR not in s:
# print(s[skip:], end="", flush=True)
# skip = len(s)
token_string = tokenizer.decode(tokens).replace(REPLACEMENT_CHAR, "")
yield token_string
if stop_strings is not None and token_string.strip().endswith(stop_strings):
break
# token_count = len(tokens)
# token_string = tokenizer.decode(tokens).replace(REPLACEMENT_CHAR, "")
# if verbose:
# print(token_string[skip:], flush=True)
# gen_time = time.perf_counter() - tic
# print("=" * 10)
# if token_count == 0:
# print("No tokens generated for this prompt")
# return
# prompt_tps = prompt_tokens.size / prompt_time
# gen_tps = (token_count - 1) / gen_time
# print(f"Prompt: {prompt_tps:.3f} tokens-per-sec")
# print(f"Generation: {gen_tps:.3f} tokens-per-sec")
# return token_string
class MlxEngine(BaseEngine):
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self._model = None
self._tokenizer = None
@property
def tokenizer(self) -> PreTrainedTokenizer:
return self._tokenizer
def load_model(self, ):
model_path = MODEL_PATH
self._model, self._tokenizer = load(model_path)
self.model_path = model_path
print(f'Load MLX model from {model_path}')
def generate_yield_string(self, prompt, temperature, max_tokens, stop_strings: Optional[Tuple[str]] = None, **kwargs):
num_tokens = len(self.tokenizer.encode(prompt))
response = None
for response in generate_yield_string(
self._model, self._tokenizer,
prompt, temp=temperature, max_tokens=max_tokens,
repetition_penalty=kwargs.get("repetition_penalty", None),
stop_strings=stop_strings,
):
yield response, num_tokens
if response is not None:
full_text = prompt + response
num_tokens = len(self.tokenizer.encode(full_text))
yield response, num_tokens
def batch_generate(self, prompts, temperature, max_tokens, stop_strings: Optional[Tuple[str]] = None, **kwargs):
"""
! MLX does not support
"""
responses = [
generate_string(
self._model, self._tokenizer,
s, temp=temperature, max_tokens=max_tokens,
repetition_penalty=kwargs.get("repetition_penalty", None),
stop_strings=stop_strings,
)
for s in prompts
]
return responses
|