File size: 49,795 Bytes
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8415640
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
from contextlib import nullcontext
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn

from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.modeling_outputs import ModelOutput
from transformers.models.clip.configuration_clip import CLIPConfig
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from transformers import AutoModel, AutoModelForCausalLM
from transformers.models.llava.configuration_llava import LlavaConfig

from transformers.models.llava.modeling_llava import (
    LlavaCausalLMOutputWithPast,
    LlavaMultiModalProjector,
    LlavaPreTrainedModel,
    LLAVA_START_DOCSTRING,
    LLAVA_INPUTS_DOCSTRING,
    LlavaForConditionalGeneration,
)

from transformers.models.blip_2.configuration_blip_2 import (
    Blip2Config,
    Blip2QFormerConfig,
)
import os
from transformers.models.blip_2.modeling_blip_2 import (
    Blip2Config,
    Blip2QFormerModel,
    Blip2PreTrainedModel,
    BLIP_2_INPUTS_DOCSTRING,
)

from transformers.utils.import_utils import is_flash_attn_greater_or_equal_2_10

# from .configuration_sealmm import SeaLMMConfig

logger = logging.get_logger(__name__)

# _CONFIG_FOR_DOC = "LlavaConfig"
_CONFIG_FOR_DOC = "SeaLMMConfig"


class SeaLMMConfig(LlavaConfig):
    def __init__(self, *args, **kwargs):
        self.projector_num_layers = kwargs.get("projector_num_layers", 1)
        super().__init__(*args, **kwargs)

"""
Llava

vision_config.num_hidden_layers = vision_config.num_hidden_layers + config.vision_feature_layer + 1
# "num_hidden_layers": 24,

"""

IMAGE_TOKEN = "<|image|>"
DEBUG = bool(int(os.environ.get("DEBUG", "0")))


def by_sample_merge_input_ids_with_image_features(
    self, image_features, inputs_embeds, input_ids, attention_mask=None, position_ids=None
):
    """
    input_ids:    [tlen]
    input_embeds: [tlen, dt]
    img_embeds:   [ilen, ifeat, di]

    e.g:
        input_ids: [
            a b c d e f X g h i j k X l m
        ]
        img_embeds: [3, ifeat, id]      # img_embeds has padding
    """
    num_images, num_image_patches, embed_dim = image_features.shape
    sequence_length = input_ids.size(0)
    left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
    assert not left_padding, f'should only use right padding'
    # 1. Create a mask to know where special image tokens are
    special_image_token_mask = input_ids == self.config.image_token_index
    num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
    # Compute the maximum embed dimension
    max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length

from transformers.models.clip.configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
from transformers.models.clip.modeling_clip import (
    contrastive_loss,
    clip_loss,
    CLIPVisionModelOutput,
    CLIPTextModelOutput,
    CLIPOutput,
    CLIPTextEmbeddings,
    CLIPVisionEmbeddings,
    CLIPAttention,
    CLIPMLP,
    CLIPEncoderLayer,
    CLIPPreTrainedModel,
    CLIPTextTransformer,
    CLIPTextModel,
    CLIPVisionTransformer,
    CLIPVisionModel,
    CLIPModel,
    CLIPEncoder,
    CLIPTextModelWithProjection,
    CLIPVisionModelWithProjection,
    CLIP_START_DOCSTRING,
    CLIP_TEXT_INPUTS_DOCSTRING,
    CLIP_VISION_INPUTS_DOCSTRING,
    CLIP_INPUTS_DOCSTRING,
)
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling



# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
    import torch.nn.functional as F
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )

class CLIPFlashAttention2(CLIPAttention):
    """
    CLIP flash attention module. This module inherits from `CLIPAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """
    def __init__(self, config, is_causal=False):
        super().__init__(config)
        self.is_causal = is_causal

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        causal_attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """Input shape: Batch x Time x Channel"""
        if output_attentions:
            raise ValueError("CLIPFlashAttention2 does not support output_attentions")

        if self.is_causal and causal_attention_mask is None:
            raise ValueError("CLIPFlashAttention2 has causal=True but no causal_attention_mask provided")

        bsz, tgt_len, embed_dim = hidden_states.size()

        # [batch_size, tgt_len, embed_dim]
        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        # [batch_size, tgt_len, embed_dim] -> [batch_size, tgt_len, num_heads, head_dim]
        query_states = query_states.view(bsz, tgt_len, self.num_heads, self.head_dim).contiguous()
        key_states = key_states.view(bsz, tgt_len, self.num_heads, self.head_dim).contiguous()
        value_states = value_states.view(bsz, tgt_len, self.num_heads, self.head_dim).contiguous()

        attn_output = self._flash_attention_forward(
            query_states=query_states,
            key_states=key_states,
            value_states=value_states,
            attention_mask=attention_mask,
            query_length=tgt_len,
            dropout=self.dropout,
            softmax_scale=self.scale,
        )
        # [batch_size, tgt_len, num_heads, head_dim] -> [batch_size, tgt_len, embed_dim]
        attn_output = attn_output.view(bsz, tgt_len, embed_dim)
        attn_output = self.out_proj(attn_output)

        return attn_output, None

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
    def _flash_attention_forward(
        self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
    ) -> torch.Tensor:
        """
        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
        first unpad the input, then computes the attention scores and pad the final attention scores.

        Args:
            query_states (`torch.Tensor`):
                Input query states to be passed to Flash Attention API
            key_states (`torch.Tensor`):
                Input key states to be passed to Flash Attention API
            value_states (`torch.Tensor`):
                Input value states to be passed to Flash Attention API
            attention_mask (`torch.Tensor`):
                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
                position of padding tokens and 1 for the position of non-padding tokens.
            dropout (`int`, *optional*):
                Attention dropout
            softmax_scale (`float`, *optional*):
                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
        """
        from flash_attn import flash_attn_func, flash_attn_varlen_func
        from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
        # Contains at least one padding token in the sequence
        if attention_mask is not None:
            batch_size = query_states.shape[0]
            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                query_states, key_states, value_states, attention_mask, query_length
            )
            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            attn_output_unpad = flash_attn_varlen_func(
                query_states,
                key_states,
                value_states,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_in_batch_q,
                max_seqlen_k=max_seqlen_in_batch_k,
                dropout_p=dropout,
                softmax_scale=softmax_scale,
                causal=self.is_causal,
            )

            attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
        else:
            attn_output = flash_attn_func(
                query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=self.is_causal
            )

        return attn_output

    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
        from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape

        key_layer = index_first_axis(
            key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )
        value_layer = index_first_axis(
            value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )
        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            # There is a memcpy here, that is very bad.
            cu_seqlens_q = torch.arange(batch_size + 1, dtype=torch.int32, device=query_layer.device)
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The :q_len slice assumes right padding.
            attention_mask = attention_mask[:, :query_length]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )


class SeaLMMCLIPEncoderLayer(CLIPEncoderLayer):
    def __init__(self, config: CLIPConfig):
        super(CLIPEncoderLayer, self).__init__()
        self.embed_dim = config.hidden_size
        # self.self_attn = LlavaCLIPFlashAttention(config)
        if is_flash_attn_greater_or_equal_2_10():
            self.self_attn = CLIPFlashAttention2(config)
        else:
            self.self_attn = CLIPAttention(config)
        self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.mlp = CLIPMLP(config)
        self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)


class SeaLMMCLIPEncoder(CLIPEncoder):
    """
    Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
    [`CLIPEncoderLayer`].

    Args:
        config: CLIPConfig
    """

    def __init__(self, config: CLIPConfig):
        super(CLIPEncoder, self).__init__()
        self.config = config
        self.layers = nn.ModuleList([SeaLMMCLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False
    
    def forward(
        self,
        inputs_embeds,
        attention_mask: Optional[torch.Tensor] = None,
        causal_attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Causal mask for the text model. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = False
        output_attentions = False
        # return_dict = False

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        hidden_states = inputs_embeds
        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # if self.gradient_checkpointing and self.training:
            #     layer_outputs = self._gradient_checkpointing_func(
            #         encoder_layer.__call__,
            #         hidden_states,
            #         attention_mask,
            #         causal_attention_mask,
            #         output_attentions,
            #     )
            # else:
            # ! enforce no checkpointing here
            layer_outputs = encoder_layer(
                hidden_states,
                attention_mask,
                causal_attention_mask,
                output_attentions=output_attentions,
            )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


class SeaLMMVisionTransformer(nn.Module):
    def __init__(self, config: CLIPVisionConfig):
        super().__init__()
        self.config = config
        embed_dim = config.hidden_size

        self.embeddings = CLIPVisionEmbeddings(config)
        self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
        # self.encoder = CLIPEncoder(config)
        self.encoder = SeaLMMCLIPEncoder(config)
        # self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)

    @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        Returns:

        """
        assert output_attentions is None
        assert output_hidden_states is None
        # assert return_dict is None
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        hidden_states = self.embeddings(pixel_values)
        hidden_states = self.pre_layrnorm(hidden_states)

        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = encoder_outputs[0]

        if not return_dict:
            raise ValueError(f'Not support return_dict')

        return BaseModelOutputWithPooling(
            last_hidden_state=last_hidden_state,
            # pooler_output=pooled_output,
            pooler_output=None,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


@add_start_docstrings(
    """The vision model from CLIP without any head or projection on top.""",
    CLIP_START_DOCSTRING,
)
class SeaLMMCLIPVisionModel(CLIPPreTrainedModel):
    config_class = CLIPVisionConfig
    main_input_name = "pixel_values"
    _no_split_modules = ["SeaLMMCLIPEncoderLayer"]

    def __init__(self, config: CLIPVisionConfig):
        super().__init__(config)
        self.vision_model = SeaLMMVisionTransformer(config)
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> nn.Module:
        return self.vision_model.embeddings.patch_embedding

    @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, CLIPVisionModel

        >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
        >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, return_tensors="pt")

        >>> outputs = model(**inputs)
        >>> last_hidden_state = outputs.last_hidden_state
        >>> pooled_output = outputs.pooler_output  # pooled CLS states
        ```"""
        # return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        return self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )


class SeaLMMMultiModalProjector(SeaLMMCLIPEncoder):
    def __init__(self, config: SeaLMMConfig):
        super(CLIPEncoder, self).__init__()
        self.config = config
        self.projector_num_layers = getattr(config, "projector_num_layers", 2)
        self.vision_config = config.vision_config
        self.num_vision_feature_layer = int(0 - config.vision_feature_layer) - 1

        assert self.num_vision_feature_layer > 0

        self.layers = nn.ModuleList([
            # LlavaCLIPFasterEncoderLayer(self.vision_config) 
            SeaLMMCLIPEncoderLayer(self.vision_config) 
            for _ in range(self.projector_num_layers)]
        )

        projector_layernorm_eps = getattr(config, "projector_layernorm_eps", 1e-05)
        self.projector_layernorm = nn.LayerNorm(
            # len(config.vision_feature_layers) * config.vision_config.hidden_size, eps=projector_layernorm_eps
            config.vision_config.hidden_size, eps=projector_layernorm_eps
        )

        self.linear_1 = nn.Linear(
            # len(config.vision_feature_layers) * config.vision_config.hidden_size,
            config.vision_config.hidden_size,
            config.text_config.hidden_size,
            bias=True,
        )
        # self.act = ACT2FN[config.projector_hidden_act]
        # self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)

        self.gradient_checkpointing = False
    
    def forward(self, hidden_states, attention_mask=None, causal_attention_mask=None):
        """
        hidden_states must not be striped
        """
        output_attentions = False

        for idx, encoder_layer in enumerate(self.layers):
            # if output_hidden_states:
            #     encoder_states = encoder_states + (hidden_states,)
            # if self.gradient_checkpointing and self.training:
            #     layer_outputs = self._gradient_checkpointing_func(
            #         encoder_layer.__call__,
            #         hidden_states,
            #         attention_mask,
            #         causal_attention_mask,
            #         output_attentions,
            #     )
            # else:
            # ! turn off checkpointing
            layer_outputs = encoder_layer(
                hidden_states,
                attention_mask,
                causal_attention_mask,
                output_attentions=output_attentions,
            )

            hidden_states = layer_outputs[0]
        
        hidden_states = hidden_states[:, 1:]

        hidden_states = self.projector_layernorm(hidden_states)
        hidden_states = self.linear_1(hidden_states)
        # hidden_states = self.act(hidden_states)
        # hidden_states = self.linear_2(hidden_states)
        return hidden_states



@add_start_docstrings(
    """The CLip- LLAVA model which consists of a vision backbone and a language model.""",
    LLAVA_START_DOCSTRING,
)
class SeaLMMForCausalLM(LlavaPreTrainedModel):
    def __init__(self, config: SeaLMMConfig, vision_tower=None, language_model=None):
        super().__init__(config)
        # self.vision_tower = AutoModel.from_config(config.vision_config)
        # self.vision_tower = vision_tower or LlavaCLIPVisionModel(config=config.vision_config)
        self.vision_tower = vision_tower or SeaLMMCLIPVisionModel(config=config.vision_config)
        self.multi_modal_projector = SeaLMMMultiModalProjector(config)
        # self.vocab_size = config.text_config.vocab_size
        self.language_model = language_model or AutoModelForCausalLM.from_config(
            config.text_config, attn_implementation=config._attn_implementation
        )
        self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
        self.post_init()

        self.freeze_vision_tower = True
    
    def unfreeze_vision_tower(self):
        logger.info(f'UNFREEZE {self.freeze_vision_tower=}')
        self.freeze_vision_tower = False
    
    def freeze_vision_tower(self):
        logger.info(f'FREEZE {self.freeze_vision_tower=}')
        self.freeze_vision_tower = True
    
    @classmethod
    def create_model_config_from_components(
        cls, 
        lm_config=None, 
        vision_config=None, 
        tokenizer=None, 
        vision_feature_layer=None,
        projector_num_layers=1,
        **kwargs,
    ) -> SeaLMMConfig:
        # self.projector_num_layers = kwargs.get("projector_num_layers", 1)
        config = SeaLMMConfig(vision_config, lm_config, projector_num_layers=projector_num_layers, **kwargs)
        config.vision_feature_layer = config.vision_feature_layer if vision_feature_layer is None else vision_feature_layer

        if config.vision_feature_layer < 0:
            config.vision_config.num_hidden_layers = config.vision_config.num_hidden_layers + config.vision_feature_layer + 1
        else:
            config.vision_config.num_hidden_layers = config.vision_feature_layer + 1

        if IMAGE_TOKEN not in tokenizer.get_vocab():
            tokenizer.add_special_tokens({"cls_token": IMAGE_TOKEN})
        
        config.image_token_index = tokenizer.cls_token_id
        config.vocab_size = config.text_config.vocab_size
        config.architectures = ["SeaLMMForCausalLM"]
        return config

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    def get_decoder(self):
        return self.language_model.get_decoder()

    def tie_weights(self):
        return self.language_model.tie_weights()

    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
        model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        # update vocab size
        self.config.text_config.vocab_size = model_embeds.num_embeddings
        self.config.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings
        return model_embeds

    # @torch.no_grad
    def _merge_input_ids_with_image_features(
        self, image_features, inputs_embeds, input_ids, attention_mask, position_ids, labels=None
    ):
        """
        input_ids:      [b, tlen]
        input_embeds:   [b, tlen, dt]
        image_features: [b, ilen, ifeat, di]
        labels: None or [b, tlen] --> must extend labels to input_ids, 

        # in input_ids, there may be image_token_index, number of image_token_index <= ilen
        input_ids: [
            a b c d e f X g h i j k X l m
            o p q r X s t u v _ _ _ _ _ _
        ]
        input_ids should be: [
            a b c d e f X X X X X g h i j k X X X X X l m
            o p q r X X X X X s t u v _ _ _ _ _ _ _ _ _ _
        ]
        labels should be: [
            a b c d e f _ _ _ _ _ g h i j k _ _ _ _ _ l m
            o p q r _ _ _ _ _ s t u v _ _ _ _ _ _ _ _ _ _
        ]
        # mask replace image onto it

        # Use torch.vmap for simplicy
        def sample_merge():
            input_ids:    [tlen]
            input_embeds: [tlen, dt]
            img_embeds:   [ilen, ifeat, di]
            e.g:
            input_ids: [
                a b c d e f X g h i j k X l m
            ]
            img_embeds: [3, ifeat, id]      # img_embeds has padding


        """
        with torch.no_grad():
            num_images, num_image_patches, embed_dim = image_features.shape
            batch_size, sequence_length = input_ids.shape
            # left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
            left_padding = torch.any(attention_mask[:, 0] == 0)
            # assert not left_padding or batch_size == 1
            # 1. Create a mask to know where special image tokens are
            special_image_token_mask = input_ids == self.config.image_token_index
            num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
            # Reserve for padding of num_images
            total_num_special_image_tokens = torch.sum(special_image_token_mask)
            assert total_num_special_image_tokens == num_images, f'{total_num_special_image_tokens=} != {num_images=} | {image_features.shape} {input_ids}'
            # Compute the maximum embed dimension
            max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
            batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)

            # 2. Compute the positions where text should be written
            # Calculate new positions for text tokens in merged image-text sequence.
            # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
            # `torch.cumsum` computes how each image token shifts subsequent text token positions.
            # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
            new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
            nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
            if left_padding:
                new_token_positions += nb_image_pad[:, None]  # offset for left padding
            text_to_overwrite = new_token_positions[batch_indices, non_image_indices]

        # 3. Create the full embedding, already padded to the maximum position
        final_embedding = torch.zeros(
            batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
        )
        final_attention_mask = torch.zeros(
            batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
        )
        final_labels = None
        if labels is not None:
            final_labels = torch.full_like(final_attention_mask, self.config.ignore_index).to(torch.long)

        # In case the Vision model or the Language model has been offloaded to CPU, we need to manually
        # set the corresponding tensors into their correct target device.
        target_device = inputs_embeds.device
        batch_indices, non_image_indices, text_to_overwrite = (
            batch_indices.to(target_device),
            non_image_indices.to(target_device),
            text_to_overwrite.to(target_device),
        )
        attention_mask = attention_mask.to(target_device)

        # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
        # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
        final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
        final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
        if labels is not None:
            final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]

        # 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling
        image_to_overwrite = torch.all(final_embedding == 0, dim=-1)
        # image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
        if left_padding:
            image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
        else:
            val = torch.arange(max_embed_dim).unsqueeze(0).to(target_device).expand(batch_size, max_embed_dim) < new_token_positions[:, -1:].to(target_device)
            image_to_overwrite &= val

        if image_to_overwrite.sum() != image_features.shape[:-1].numel():
            raise ValueError(
                f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
                f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
            )

        final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
        final_attention_mask |= image_to_overwrite
        position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)

        if not left_padding:
            # Making sure its the same
            seq_lens = final_attention_mask.sum(-1)
            for i, (mask, seq_len) in enumerate(zip(final_attention_mask, seq_lens)):
                # seq_len = mask.sum(-1)
                assert torch.all(mask[:seq_len] == 1), f'final 1 mask[{i}]: {seq_len} {final_attention_mask.tolist()=}'
                assert torch.all(mask[seq_len:] == 0), f'final 0 mask[{i}]: {seq_len} {final_attention_mask.tolist()=}'
        
        
        # if DEBUG:
        #     print(f'final_attention_mask=\n{final_attention_mask.tolist()}')
        #     print(f'text_to_overwrite=\n{text_to_overwrite.int().tolist()}')
        #     print(f'image_to_overwrite=\n{image_to_overwrite.int().tolist()}')
        #     print(f'position_ids=\n{position_ids.tolist()}')
        #     print(f'labels=\n{labels.tolist()}')
        #     print(f'final_labels=\n{final_labels.tolist()}')

        return final_embedding, final_attention_mask, position_ids, final_labels
    
    def extract_image_features(self, pixel_values, vision_feature_select_strategy=None):
        vision_feature_select_strategy = (
            vision_feature_select_strategy
            if vision_feature_select_strategy is not None
            else self.config.vision_feature_select_strategy
        )
        with (torch.no_grad() if self.freeze_vision_tower else nullcontext()):
            image_outputs = self.vision_tower(pixel_values)
        hiddent_states = image_outputs.last_hidden_state
        image_features = self.multi_modal_projector(hiddent_states)
        return image_features

    @add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        vision_feature_layer: Optional[int] = None,
        vision_feature_select_strategy: Optional[str] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, LlavaForConditionalGeneration

        >>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
        >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")

        >>> prompt = "<image>\nUSER: What's the content of the image?\nASSISTANT:"
        >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(text=prompt, images=image, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(**inputs, max_length=30)
        >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "\nUSER: What's the content of the image?\nASSISTANT: The image features a stop sign on a street corner"
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        vision_feature_layer = (
            vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
        )
        vision_feature_select_strategy = (
            vision_feature_select_strategy
            if vision_feature_select_strategy is not None
            else self.config.vision_feature_select_strategy
        )

        if inputs_embeds is None:
            # 1. Extra the input embeddings
            for_inputs_embeds_ids = input_ids.clone()
            for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0
            # inputs_embeds = self.get_input_embeddings()(input_ids)
            inputs_embeds = self.get_input_embeddings()(for_inputs_embeds_ids)

            # 2. Merge text and images
            if pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) > 0:
                num_images = pixel_values.size(0)
                batch_size, sequence_length = input_ids.shape
                special_image_token_mask = input_ids == self.config.image_token_index
                # Reserve for padding of num_images
                total_num_special_image_tokens = torch.sum(special_image_token_mask)
                assert num_images == total_num_special_image_tokens, (
                    f'{num_images} < {total_num_special_image_tokens} | {special_image_token_mask}'
                )
                # pixel_values = pixel_values[:total_num_special_image_tokens]

                # image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
                # with (torch.no_grad() if self.freeze_vision_tower else nullcontext()):
                #     image_outputs = self.vision_tower(pixel_values)
                # # this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated.
                # # selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
                # selected_image_feature = image_outputs.last_hidden_state

                # if vision_feature_select_strategy == "default":
                #     selected_image_feature = selected_image_feature[:, 1:]
                # elif vision_feature_select_strategy == "full":
                #     selected_image_feature = selected_image_feature
                # else:
                #     raise ValueError(
                #         f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
                #     )

                # image_features = self.multi_modal_projector(selected_image_feature)
                # print(f"{pixel_values.size()=}")
                # ! extract_image_features will handle all image features extraction
                image_features = self.extract_image_features(pixel_values)
                # if DEBUG:
                #     image_features = image_features[:, :3]

                inputs_embeds, attention_mask, position_ids, labels = self._merge_input_ids_with_image_features(
                    image_features, inputs_embeds, input_ids, attention_mask, position_ids,
                    labels=labels
                )
                # if labels is None:
                #     # ! this is wrong!
                #     labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long)
                # print(inputs_embeds.size())
                
            elif pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0:
                # there is no images
                pass
            else:
                # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
                # generation with cache
                # ! (phi) why do we need to do this?
                # if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
                #     # ! it can possible the bug because if mistral, from the first layer_key like this
                #     # ! MUST UNDERSTAND and fix error
                #     # Retrieve the first layer to inspect the logits and mask out the hidden states
                #     # that are set to 0
                #     first_layer_past_key_value = past_key_values[0][0][:, 0, :, 0]
                #     batch_index, non_attended_tokens = torch.where(first_layer_past_key_value == 0)
                #     # Get the target length
                #     target_seqlen = first_layer_past_key_value.shape[-1] + 1

                #     extended_attention_mask = torch.ones(
                #         (attention_mask.shape[0], target_seqlen - attention_mask.shape[1]),
                #         dtype=attention_mask.dtype,
                #         device=attention_mask.device,
                #     )
                #     # print(f'{extended_attention_mask.shape} | {batch_index=} | {non_attended_tokens=}')

                #     # Zero-out the places where we don't need to attend
                #     extended_attention_mask[batch_index, non_attended_tokens] = 0

                #     attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1)
                #     position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
                
                # ! fix: https://github.com/huggingface/transformers/blob/c90268de7560c3fef21a927e0bfcf2b611a8711e/src/transformers/models/llava/modeling_llava.py
                # https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
                if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
                    # Retrieve the first layer to inspect the logits and mask out the hidden states
                    # that are set to 0
                    first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]

                    # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
                    batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)

                    # Get the target length
                    target_seqlen = first_layer_past_key_value.shape[-1] + 1

                    extended_attention_mask = torch.ones(
                        (attention_mask.shape[0], target_seqlen - attention_mask.shape[1]),
                        dtype=attention_mask.dtype,
                        device=attention_mask.device,
                    )

                    # Filter out only the tokens that can be un-attended, this can happen
                    # in the case one uses Llava + Fused modules where the cache on the
                    # first iteration is already big enough, or if one passes custom cache
                    valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
                    new_batch_index = batch_index[valid_indices]
                    new_non_attended_tokens = non_attended_tokens[valid_indices]

                    # Zero-out the places where we don't need to attend
                    extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0

                    attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1)
                    position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1

        
        outputs = self.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = outputs[0]

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            if attention_mask is not None:
                shift_attention_mask = attention_mask[..., 1:]
                shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
                shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
            else:
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
            )

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return LlavaCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, **kwargs
    ):
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                past_length = past_key_values.seen_tokens
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
            elif self.config.image_token_index in input_ids:
                input_ids = input_ids[:, input_ids.shape[1] - 1 :]
            # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
            # older attention values, as their corresponding values are not part of the input.
            if cache_length < past_length and attention_mask is not None:
                attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "pixel_values": pixel_values,
            }
        )
        return model_inputs

    def _reorder_cache(self, *args, **kwargs):
        return self.language_model._reorder_cache(*args, **kwargs)