Spaces:
Running
on
Zero
Running
on
Zero
File size: 49,795 Bytes
8889bbb 8415640 8889bbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 |
from contextlib import nullcontext
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.modeling_outputs import ModelOutput
from transformers.models.clip.configuration_clip import CLIPConfig
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from transformers import AutoModel, AutoModelForCausalLM
from transformers.models.llava.configuration_llava import LlavaConfig
from transformers.models.llava.modeling_llava import (
LlavaCausalLMOutputWithPast,
LlavaMultiModalProjector,
LlavaPreTrainedModel,
LLAVA_START_DOCSTRING,
LLAVA_INPUTS_DOCSTRING,
LlavaForConditionalGeneration,
)
from transformers.models.blip_2.configuration_blip_2 import (
Blip2Config,
Blip2QFormerConfig,
)
import os
from transformers.models.blip_2.modeling_blip_2 import (
Blip2Config,
Blip2QFormerModel,
Blip2PreTrainedModel,
BLIP_2_INPUTS_DOCSTRING,
)
from transformers.utils.import_utils import is_flash_attn_greater_or_equal_2_10
# from .configuration_sealmm import SeaLMMConfig
logger = logging.get_logger(__name__)
# _CONFIG_FOR_DOC = "LlavaConfig"
_CONFIG_FOR_DOC = "SeaLMMConfig"
class SeaLMMConfig(LlavaConfig):
def __init__(self, *args, **kwargs):
self.projector_num_layers = kwargs.get("projector_num_layers", 1)
super().__init__(*args, **kwargs)
"""
Llava
vision_config.num_hidden_layers = vision_config.num_hidden_layers + config.vision_feature_layer + 1
# "num_hidden_layers": 24,
"""
IMAGE_TOKEN = "<|image|>"
DEBUG = bool(int(os.environ.get("DEBUG", "0")))
def by_sample_merge_input_ids_with_image_features(
self, image_features, inputs_embeds, input_ids, attention_mask=None, position_ids=None
):
"""
input_ids: [tlen]
input_embeds: [tlen, dt]
img_embeds: [ilen, ifeat, di]
e.g:
input_ids: [
a b c d e f X g h i j k X l m
]
img_embeds: [3, ifeat, id] # img_embeds has padding
"""
num_images, num_image_patches, embed_dim = image_features.shape
sequence_length = input_ids.size(0)
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
assert not left_padding, f'should only use right padding'
# 1. Create a mask to know where special image tokens are
special_image_token_mask = input_ids == self.config.image_token_index
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
# Compute the maximum embed dimension
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
from transformers.models.clip.configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
from transformers.models.clip.modeling_clip import (
contrastive_loss,
clip_loss,
CLIPVisionModelOutput,
CLIPTextModelOutput,
CLIPOutput,
CLIPTextEmbeddings,
CLIPVisionEmbeddings,
CLIPAttention,
CLIPMLP,
CLIPEncoderLayer,
CLIPPreTrainedModel,
CLIPTextTransformer,
CLIPTextModel,
CLIPVisionTransformer,
CLIPVisionModel,
CLIPModel,
CLIPEncoder,
CLIPTextModelWithProjection,
CLIPVisionModelWithProjection,
CLIP_START_DOCSTRING,
CLIP_TEXT_INPUTS_DOCSTRING,
CLIP_VISION_INPUTS_DOCSTRING,
CLIP_INPUTS_DOCSTRING,
)
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
import torch.nn.functional as F
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
class CLIPFlashAttention2(CLIPAttention):
"""
CLIP flash attention module. This module inherits from `CLIPAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, config, is_causal=False):
super().__init__(config)
self.is_causal = is_causal
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
if output_attentions:
raise ValueError("CLIPFlashAttention2 does not support output_attentions")
if self.is_causal and causal_attention_mask is None:
raise ValueError("CLIPFlashAttention2 has causal=True but no causal_attention_mask provided")
bsz, tgt_len, embed_dim = hidden_states.size()
# [batch_size, tgt_len, embed_dim]
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# [batch_size, tgt_len, embed_dim] -> [batch_size, tgt_len, num_heads, head_dim]
query_states = query_states.view(bsz, tgt_len, self.num_heads, self.head_dim).contiguous()
key_states = key_states.view(bsz, tgt_len, self.num_heads, self.head_dim).contiguous()
value_states = value_states.view(bsz, tgt_len, self.num_heads, self.head_dim).contiguous()
attn_output = self._flash_attention_forward(
query_states=query_states,
key_states=key_states,
value_states=value_states,
attention_mask=attention_mask,
query_length=tgt_len,
dropout=self.dropout,
softmax_scale=self.scale,
)
# [batch_size, tgt_len, num_heads, head_dim] -> [batch_size, tgt_len, embed_dim]
attn_output = attn_output.view(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
def _flash_attention_forward(
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
) -> torch.Tensor:
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=self.is_causal,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=self.is_causal
)
return attn_output
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
# There is a memcpy here, that is very bad.
cu_seqlens_q = torch.arange(batch_size + 1, dtype=torch.int32, device=query_layer.device)
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The :q_len slice assumes right padding.
attention_mask = attention_mask[:, :query_length]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
class SeaLMMCLIPEncoderLayer(CLIPEncoderLayer):
def __init__(self, config: CLIPConfig):
super(CLIPEncoderLayer, self).__init__()
self.embed_dim = config.hidden_size
# self.self_attn = LlavaCLIPFlashAttention(config)
if is_flash_attn_greater_or_equal_2_10():
self.self_attn = CLIPFlashAttention2(config)
else:
self.self_attn = CLIPAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = CLIPMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
class SeaLMMCLIPEncoder(CLIPEncoder):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`CLIPEncoderLayer`].
Args:
config: CLIPConfig
"""
def __init__(self, config: CLIPConfig):
super(CLIPEncoder, self).__init__()
self.config = config
self.layers = nn.ModuleList([SeaLMMCLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = False
output_attentions = False
# return_dict = False
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# if self.gradient_checkpointing and self.training:
# layer_outputs = self._gradient_checkpointing_func(
# encoder_layer.__call__,
# hidden_states,
# attention_mask,
# causal_attention_mask,
# output_attentions,
# )
# else:
# ! enforce no checkpointing here
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class SeaLMMVisionTransformer(nn.Module):
def __init__(self, config: CLIPVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = CLIPVisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
# self.encoder = CLIPEncoder(config)
self.encoder = SeaLMMCLIPEncoder(config)
# self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
assert output_attentions is None
assert output_hidden_states is None
# assert return_dict is None
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
if not return_dict:
raise ValueError(f'Not support return_dict')
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
# pooler_output=pooled_output,
pooler_output=None,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""The vision model from CLIP without any head or projection on top.""",
CLIP_START_DOCSTRING,
)
class SeaLMMCLIPVisionModel(CLIPPreTrainedModel):
config_class = CLIPVisionConfig
main_input_name = "pixel_values"
_no_split_modules = ["SeaLMMCLIPEncoderLayer"]
def __init__(self, config: CLIPVisionConfig):
super().__init__(config)
self.vision_model = SeaLMMVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, CLIPVisionModel
>>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
```"""
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class SeaLMMMultiModalProjector(SeaLMMCLIPEncoder):
def __init__(self, config: SeaLMMConfig):
super(CLIPEncoder, self).__init__()
self.config = config
self.projector_num_layers = getattr(config, "projector_num_layers", 2)
self.vision_config = config.vision_config
self.num_vision_feature_layer = int(0 - config.vision_feature_layer) - 1
assert self.num_vision_feature_layer > 0
self.layers = nn.ModuleList([
# LlavaCLIPFasterEncoderLayer(self.vision_config)
SeaLMMCLIPEncoderLayer(self.vision_config)
for _ in range(self.projector_num_layers)]
)
projector_layernorm_eps = getattr(config, "projector_layernorm_eps", 1e-05)
self.projector_layernorm = nn.LayerNorm(
# len(config.vision_feature_layers) * config.vision_config.hidden_size, eps=projector_layernorm_eps
config.vision_config.hidden_size, eps=projector_layernorm_eps
)
self.linear_1 = nn.Linear(
# len(config.vision_feature_layers) * config.vision_config.hidden_size,
config.vision_config.hidden_size,
config.text_config.hidden_size,
bias=True,
)
# self.act = ACT2FN[config.projector_hidden_act]
# self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
self.gradient_checkpointing = False
def forward(self, hidden_states, attention_mask=None, causal_attention_mask=None):
"""
hidden_states must not be striped
"""
output_attentions = False
for idx, encoder_layer in enumerate(self.layers):
# if output_hidden_states:
# encoder_states = encoder_states + (hidden_states,)
# if self.gradient_checkpointing and self.training:
# layer_outputs = self._gradient_checkpointing_func(
# encoder_layer.__call__,
# hidden_states,
# attention_mask,
# causal_attention_mask,
# output_attentions,
# )
# else:
# ! turn off checkpointing
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
hidden_states = hidden_states[:, 1:]
hidden_states = self.projector_layernorm(hidden_states)
hidden_states = self.linear_1(hidden_states)
# hidden_states = self.act(hidden_states)
# hidden_states = self.linear_2(hidden_states)
return hidden_states
@add_start_docstrings(
"""The CLip- LLAVA model which consists of a vision backbone and a language model.""",
LLAVA_START_DOCSTRING,
)
class SeaLMMForCausalLM(LlavaPreTrainedModel):
def __init__(self, config: SeaLMMConfig, vision_tower=None, language_model=None):
super().__init__(config)
# self.vision_tower = AutoModel.from_config(config.vision_config)
# self.vision_tower = vision_tower or LlavaCLIPVisionModel(config=config.vision_config)
self.vision_tower = vision_tower or SeaLMMCLIPVisionModel(config=config.vision_config)
self.multi_modal_projector = SeaLMMMultiModalProjector(config)
# self.vocab_size = config.text_config.vocab_size
self.language_model = language_model or AutoModelForCausalLM.from_config(
config.text_config, attn_implementation=config._attn_implementation
)
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self.post_init()
self.freeze_vision_tower = True
def unfreeze_vision_tower(self):
logger.info(f'UNFREEZE {self.freeze_vision_tower=}')
self.freeze_vision_tower = False
def freeze_vision_tower(self):
logger.info(f'FREEZE {self.freeze_vision_tower=}')
self.freeze_vision_tower = True
@classmethod
def create_model_config_from_components(
cls,
lm_config=None,
vision_config=None,
tokenizer=None,
vision_feature_layer=None,
projector_num_layers=1,
**kwargs,
) -> SeaLMMConfig:
# self.projector_num_layers = kwargs.get("projector_num_layers", 1)
config = SeaLMMConfig(vision_config, lm_config, projector_num_layers=projector_num_layers, **kwargs)
config.vision_feature_layer = config.vision_feature_layer if vision_feature_layer is None else vision_feature_layer
if config.vision_feature_layer < 0:
config.vision_config.num_hidden_layers = config.vision_config.num_hidden_layers + config.vision_feature_layer + 1
else:
config.vision_config.num_hidden_layers = config.vision_feature_layer + 1
if IMAGE_TOKEN not in tokenizer.get_vocab():
tokenizer.add_special_tokens({"cls_token": IMAGE_TOKEN})
config.image_token_index = tokenizer.cls_token_id
config.vocab_size = config.text_config.vocab_size
config.architectures = ["SeaLMMForCausalLM"]
return config
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def tie_weights(self):
return self.language_model.tie_weights()
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
# @torch.no_grad
def _merge_input_ids_with_image_features(
self, image_features, inputs_embeds, input_ids, attention_mask, position_ids, labels=None
):
"""
input_ids: [b, tlen]
input_embeds: [b, tlen, dt]
image_features: [b, ilen, ifeat, di]
labels: None or [b, tlen] --> must extend labels to input_ids,
# in input_ids, there may be image_token_index, number of image_token_index <= ilen
input_ids: [
a b c d e f X g h i j k X l m
o p q r X s t u v _ _ _ _ _ _
]
input_ids should be: [
a b c d e f X X X X X g h i j k X X X X X l m
o p q r X X X X X s t u v _ _ _ _ _ _ _ _ _ _
]
labels should be: [
a b c d e f _ _ _ _ _ g h i j k _ _ _ _ _ l m
o p q r _ _ _ _ _ s t u v _ _ _ _ _ _ _ _ _ _
]
# mask replace image onto it
# Use torch.vmap for simplicy
def sample_merge():
input_ids: [tlen]
input_embeds: [tlen, dt]
img_embeds: [ilen, ifeat, di]
e.g:
input_ids: [
a b c d e f X g h i j k X l m
]
img_embeds: [3, ifeat, id] # img_embeds has padding
"""
with torch.no_grad():
num_images, num_image_patches, embed_dim = image_features.shape
batch_size, sequence_length = input_ids.shape
# left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
left_padding = torch.any(attention_mask[:, 0] == 0)
# assert not left_padding or batch_size == 1
# 1. Create a mask to know where special image tokens are
special_image_token_mask = input_ids == self.config.image_token_index
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
# Reserve for padding of num_images
total_num_special_image_tokens = torch.sum(special_image_token_mask)
assert total_num_special_image_tokens == num_images, f'{total_num_special_image_tokens=} != {num_images=} | {image_features.shape} {input_ids}'
# Compute the maximum embed dimension
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)
# 2. Compute the positions where text should be written
# Calculate new positions for text tokens in merged image-text sequence.
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
if left_padding:
new_token_positions += nb_image_pad[:, None] # offset for left padding
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
# 3. Create the full embedding, already padded to the maximum position
final_embedding = torch.zeros(
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
)
final_attention_mask = torch.zeros(
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
)
final_labels = None
if labels is not None:
final_labels = torch.full_like(final_attention_mask, self.config.ignore_index).to(torch.long)
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
# set the corresponding tensors into their correct target device.
target_device = inputs_embeds.device
batch_indices, non_image_indices, text_to_overwrite = (
batch_indices.to(target_device),
non_image_indices.to(target_device),
text_to_overwrite.to(target_device),
)
attention_mask = attention_mask.to(target_device)
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
if labels is not None:
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
# 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling
image_to_overwrite = torch.all(final_embedding == 0, dim=-1)
# image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
if left_padding:
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
else:
val = torch.arange(max_embed_dim).unsqueeze(0).to(target_device).expand(batch_size, max_embed_dim) < new_token_positions[:, -1:].to(target_device)
image_to_overwrite &= val
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
raise ValueError(
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
)
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
final_attention_mask |= image_to_overwrite
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
if not left_padding:
# Making sure its the same
seq_lens = final_attention_mask.sum(-1)
for i, (mask, seq_len) in enumerate(zip(final_attention_mask, seq_lens)):
# seq_len = mask.sum(-1)
assert torch.all(mask[:seq_len] == 1), f'final 1 mask[{i}]: {seq_len} {final_attention_mask.tolist()=}'
assert torch.all(mask[seq_len:] == 0), f'final 0 mask[{i}]: {seq_len} {final_attention_mask.tolist()=}'
# if DEBUG:
# print(f'final_attention_mask=\n{final_attention_mask.tolist()}')
# print(f'text_to_overwrite=\n{text_to_overwrite.int().tolist()}')
# print(f'image_to_overwrite=\n{image_to_overwrite.int().tolist()}')
# print(f'position_ids=\n{position_ids.tolist()}')
# print(f'labels=\n{labels.tolist()}')
# print(f'final_labels=\n{final_labels.tolist()}')
return final_embedding, final_attention_mask, position_ids, final_labels
def extract_image_features(self, pixel_values, vision_feature_select_strategy=None):
vision_feature_select_strategy = (
vision_feature_select_strategy
if vision_feature_select_strategy is not None
else self.config.vision_feature_select_strategy
)
with (torch.no_grad() if self.freeze_vision_tower else nullcontext()):
image_outputs = self.vision_tower(pixel_values)
hiddent_states = image_outputs.last_hidden_state
image_features = self.multi_modal_projector(hiddent_states)
return image_features
@add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[int] = None,
vision_feature_select_strategy: Optional[str] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, LlavaForConditionalGeneration
>>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
>>> prompt = "<image>\nUSER: What's the content of the image?\nASSISTANT:"
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs, max_length=30)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"\nUSER: What's the content of the image?\nASSISTANT: The image features a stop sign on a street corner"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
)
vision_feature_select_strategy = (
vision_feature_select_strategy
if vision_feature_select_strategy is not None
else self.config.vision_feature_select_strategy
)
if inputs_embeds is None:
# 1. Extra the input embeddings
for_inputs_embeds_ids = input_ids.clone()
for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0
# inputs_embeds = self.get_input_embeddings()(input_ids)
inputs_embeds = self.get_input_embeddings()(for_inputs_embeds_ids)
# 2. Merge text and images
if pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) > 0:
num_images = pixel_values.size(0)
batch_size, sequence_length = input_ids.shape
special_image_token_mask = input_ids == self.config.image_token_index
# Reserve for padding of num_images
total_num_special_image_tokens = torch.sum(special_image_token_mask)
assert num_images == total_num_special_image_tokens, (
f'{num_images} < {total_num_special_image_tokens} | {special_image_token_mask}'
)
# pixel_values = pixel_values[:total_num_special_image_tokens]
# image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
# with (torch.no_grad() if self.freeze_vision_tower else nullcontext()):
# image_outputs = self.vision_tower(pixel_values)
# # this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated.
# # selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
# selected_image_feature = image_outputs.last_hidden_state
# if vision_feature_select_strategy == "default":
# selected_image_feature = selected_image_feature[:, 1:]
# elif vision_feature_select_strategy == "full":
# selected_image_feature = selected_image_feature
# else:
# raise ValueError(
# f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
# )
# image_features = self.multi_modal_projector(selected_image_feature)
# print(f"{pixel_values.size()=}")
# ! extract_image_features will handle all image features extraction
image_features = self.extract_image_features(pixel_values)
# if DEBUG:
# image_features = image_features[:, :3]
inputs_embeds, attention_mask, position_ids, labels = self._merge_input_ids_with_image_features(
image_features, inputs_embeds, input_ids, attention_mask, position_ids,
labels=labels
)
# if labels is None:
# # ! this is wrong!
# labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long)
# print(inputs_embeds.size())
elif pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0:
# there is no images
pass
else:
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
# generation with cache
# ! (phi) why do we need to do this?
# if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
# # ! it can possible the bug because if mistral, from the first layer_key like this
# # ! MUST UNDERSTAND and fix error
# # Retrieve the first layer to inspect the logits and mask out the hidden states
# # that are set to 0
# first_layer_past_key_value = past_key_values[0][0][:, 0, :, 0]
# batch_index, non_attended_tokens = torch.where(first_layer_past_key_value == 0)
# # Get the target length
# target_seqlen = first_layer_past_key_value.shape[-1] + 1
# extended_attention_mask = torch.ones(
# (attention_mask.shape[0], target_seqlen - attention_mask.shape[1]),
# dtype=attention_mask.dtype,
# device=attention_mask.device,
# )
# # print(f'{extended_attention_mask.shape} | {batch_index=} | {non_attended_tokens=}')
# # Zero-out the places where we don't need to attend
# extended_attention_mask[batch_index, non_attended_tokens] = 0
# attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1)
# position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
# ! fix: https://github.com/huggingface/transformers/blob/c90268de7560c3fef21a927e0bfcf2b611a8711e/src/transformers/models/llava/modeling_llava.py
# https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
# Retrieve the first layer to inspect the logits and mask out the hidden states
# that are set to 0
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
# Get the target length
target_seqlen = first_layer_past_key_value.shape[-1] + 1
extended_attention_mask = torch.ones(
(attention_mask.shape[0], target_seqlen - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
# Filter out only the tokens that can be un-attended, this can happen
# in the case one uses Llava + Fused modules where the cache on the
# first iteration is already big enough, or if one passes custom cache
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
new_batch_index = batch_index[valid_indices]
new_non_attended_tokens = non_attended_tokens[valid_indices]
# Zero-out the places where we don't need to attend
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs[0]
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
shift_attention_mask = attention_mask[..., 1:]
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return LlavaCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, **kwargs
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
else:
cache_length = past_length = past_key_values[0][0].shape[2]
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
elif self.config.image_token_index in input_ids:
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
# older attention values, as their corresponding values are not part of the input.
if cache_length < past_length and attention_mask is not None:
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"pixel_values": pixel_values,
}
)
return model_inputs
def _reorder_cache(self, *args, **kwargs):
return self.language_model._reorder_cache(*args, **kwargs)
|