File size: 28,536 Bytes
203c3cd
 
 
 
 
 
 
 
 
 
 
 
f028d50
203c3cd
 
 
f028d50
203c3cd
 
 
 
 
 
 
f028d50
 
 
203c3cd
f028d50
 
 
 
 
203c3cd
f028d50
 
 
 
 
 
 
 
 
 
 
 
 
 
203c3cd
f028d50
 
203c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c14f353
 
203c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5622434
203c3cd
 
 
 
 
 
 
 
 
 
 
5622434
 
203c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e33248e
203c3cd
5622434
203c3cd
 
5622434
203c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5622434
203c3cd
 
f028d50
203c3cd
 
 
 
 
f028d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203c3cd
 
 
 
 
 
f028d50
 
203c3cd
 
 
e9cbae4
 
 
 
 
 
 
 
 
 
203c3cd
e9cbae4
203c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f028d50
 
203c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
# A mirror to gradio launch stream
# By Xuan Phi Nguyen at DAMO Academy, Alibaba Group

"""
Load FasterLlama with original VLLM codebase,

require changing config names to LlamaForCausalLM

tensor_parallel must == 1

"""


import os
import numpy as np
import argparse
import torch
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json

from gradio_client.documentation import document, set_documentation_group

from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download

DEBUG = True

if not DEBUG:

    # vllm import
    from vllm import LLM, SamplingParams
    from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
    from vllm.engine.arg_utils import EngineArgs
    from vllm.engine.llm_engine import LLMEngine
    from vllm.outputs import RequestOutput
    from vllm.sampling_params import SamplingParams
    from vllm.utils import Counter
    from vllm.sequence import (Sequence, SequenceData, SequenceGroup,
                            SequenceGroupMetadata, SequenceOutputs,
                            SequenceStatus)
    # ! reconfigure vllm to faster llama
    from vllm.model_executor.model_loader import _MODEL_REGISTRY
    from vllm.model_executor.models import LlamaForCausalLM


    _MODEL_REGISTRY['FasterLlamaForCausalLM'] = LlamaForCausalLM


def hf_model_weights_iterator(
    model_name_or_path: str,
    cache_dir: Optional[str] = None,
    use_np_cache: bool = False,
) -> Iterator[Tuple[str, torch.Tensor]]:
    from vllm.model_executor.weight_utils import Disabledtqdm
    # Prepare file lock directory to prevent multiple processes from
    # downloading the same model weights at the same time.
    lock_dir = cache_dir if cache_dir is not None else "/tmp"
    lock_file_name = model_name_or_path.replace("/", "-") + ".lock"
    lock = filelock.FileLock(os.path.join(lock_dir, lock_file_name))

    # Download model weights from huggingface.
    is_local = os.path.isdir(model_name_or_path)
    if not is_local:
        with lock:
            hf_folder = snapshot_download(model_name_or_path,
                                          allow_patterns="*.bin",
                                          cache_dir=cache_dir,
                                          local_files_only=True,
                                          tqdm_class=Disabledtqdm)
    else:
        hf_folder = model_name_or_path

    hf_bin_files = [
        # x for x in glob.glob(os.path.join(hf_folder, "*.bin"))
        x for x in glob.glob(os.path.join(hf_folder, "*model*.bin"))
        if not x.endswith("training_args.bin")
    ]
    hf_safetensors_files = [
        x for x in glob.glob(os.path.join(hf_folder, "*model*.safetensors"))
        if not x.endswith("training_args.bin")
    ]
    # print(F'Load bin files: {hf_bin_files} // safetensors: {hf_safetensors_files}')

    if use_np_cache:
        # Convert the model weights from torch tensors to numpy arrays for
        # faster loading.
        np_folder = os.path.join(hf_folder, "np")
        os.makedirs(np_folder, exist_ok=True)
        weight_names_file = os.path.join(np_folder, "weight_names.json")
        with lock:
            if not os.path.exists(weight_names_file):
                weight_names = []
                for bin_file in hf_bin_files:
                    state = torch.load(bin_file, map_location="cpu")
                    for name, param in state.items():
                        param_path = os.path.join(np_folder, name)
                        with open(param_path, "wb") as f:
                            np.save(f, param.cpu().detach().numpy())
                        weight_names.append(name)
                with open(weight_names_file, "w") as f:
                    json.dump(weight_names, f)

        with open(weight_names_file, "r") as f:
            weight_names = json.load(f)

        for name in weight_names:
            param_path = os.path.join(np_folder, name)
            with open(param_path, "rb") as f:
                param = np.load(f)
            yield name, torch.from_numpy(param)
    else:
        if len(hf_bin_files) > 0:
            print(F'Load bin files: {hf_bin_files}')
            for bin_file in hf_bin_files:
                state = torch.load(bin_file, map_location="cpu")
                for name, param in state.items():
                    yield name, param
                del state
                torch.cuda.empty_cache()
        elif len(hf_safetensors_files) > 0:
            print(F'Load safetensor files: {hf_safetensors_files}')
            from safetensors.torch import load_file
            for safe_file in hf_safetensors_files:
                # state = torch.load(bin_file, map_location="cpu")
                state = load_file(safe_file)
                for name, param in state.items():
                    yield name, param
                del state
                torch.cuda.empty_cache()
        else:
            raise ValueError(f'no files available either bin or safe')


def convert_pyslice_to_tensor(x: Any) -> torch.Tensor:
    """convert PySafeSlice object from safetensors to torch.Tensor

    PySafeSlice object supports indexing, which is done before loading the
    actual tensor and can reduce the amount of memory being read into the
    memory. However, it does not support more advanced functionalities
    like `.view()` or `.t()`. Therefore, if we need to modify the loaded
    tensor with these more complicated operators, we need to convert to
    tensor first.
    """
    if not isinstance(x, torch.Tensor):
        x = x[:]
    return x


def load_padded_tensor_parallel_vocab(
    param: torch.Tensor,
    loaded_weight: Any,  # `torch.Tensor` or `PySafeSlice`
    tensor_model_parallel_rank: int,
) -> None:
    shard_size = param.shape[0]
    start_idx = tensor_model_parallel_rank * shard_size
    end_idx = (tensor_model_parallel_rank + 1) * shard_size
    loaded_weight = loaded_weight[start_idx:end_idx]
    loaded_weight = convert_pyslice_to_tensor(loaded_weight)
    param[:loaded_weight.shape[0]].copy_(loaded_weight)


def llama_load_weights(
        self,
        model_name_or_path: str,
        cache_dir: Optional[str] = None,
        use_np_cache: bool = False,
        load_format: str = "auto",
        # load_format: str = "pt",
        revision: Optional[str] = None
):
    from vllm.model_executor.weight_utils import (
        load_tensor_parallel_weights
    )
    from vllm.model_executor.parallel_utils.parallel_state import (
        get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
    tp_size = get_tensor_model_parallel_world_size()
    tensor_model_parallel_rank = get_tensor_model_parallel_rank()

    q_proj_shard_size = (self.config.hidden_size // tp_size)
    kv_proj_shard_size = (self.config.hidden_size //
                            self.config.num_attention_heads *
                            getattr(self.config, "num_key_value_heads", self.config.num_attention_heads) // tp_size)
    attention_weight_specs = [
        # (weight_name, shard_size, offset)
        ("q_proj", q_proj_shard_size, 0),
        ("k_proj", kv_proj_shard_size, q_proj_shard_size),
        ("v_proj", kv_proj_shard_size,
            q_proj_shard_size + kv_proj_shard_size),
    ]
    state_dict = self.state_dict()
    need_to_load = len(state_dict)
    loaded = 0
    # try:
    #     iterator = hf_model_weights_iterator(model_name_or_path, cache_dir, use_np_cache)
    # except Exception as e:
    #     iterator = hf_model_weights_iterator(model_name_or_path, cache_dir, load_format, revision)
    iterator = hf_model_weights_iterator(model_name_or_path, cache_dir, use_np_cache)

    # for name, loaded_weight in hf_model_weights_iterator(
    #         model_name_or_path, cache_dir, load_format, revision):
            # model_name_or_path, cache_dir, use_np_cache):
    for name, loaded_weight in iterator:
        if "rotary_emb.inv_freq" in name:
            continue

        # if "embed_tokens" in name or "lm_head" in name:
        #     param = state_dict[name]
        #     # Consider padding in the vocab size.
        #     padded_vocab_size = (param.shape[0] * tp_size)
        #     # num_extra_rows = padded_vocab_size - self.config.vocab_size
        #     num_extra_rows = padded_vocab_size - loaded_weight.size(0)
        #     load_size = loaded_weight.size()
        #     extra_rows = torch.empty(num_extra_rows,
        #                                 loaded_weight.shape[1])
        #     extra_rows = extra_rows.to(loaded_weight)
        #     loaded_weight = torch.cat([loaded_weight, extra_rows], dim=0)
        #     if num_extra_rows > 0:
        #         print(f'Add empty to {num_extra_rows} extra row for {name}')
        #     print(f'Load: {name} | {padded_vocab_size=} | {self.config.vocab_size=} | {num_extra_rows=} | {param.size()=} | {loaded_weight.size()=} | {load_size=}')
        
        if "embed_tokens" in name or "lm_head" in name:
            param = state_dict[name]
            load_padded_tensor_parallel_vocab(param, loaded_weight, tensor_model_parallel_rank)
            loaded += 1
            continue

        is_attention_weight = False
        for weight_name, shard_size, offset in attention_weight_specs:
            if weight_name not in name or "qkv_proj" in name:
                continue
            param = state_dict[name.replace(weight_name, "qkv_proj")]

            loaded_weight = loaded_weight[
                shard_size * tensor_model_parallel_rank:shard_size *
                (tensor_model_parallel_rank + 1)]
            param_slice = param.data[offset:offset + shard_size]
            assert param_slice.shape == loaded_weight.shape

            param_slice.copy_(loaded_weight)
            loaded += 1.0 / 3
            is_attention_weight = True
            break
        if is_attention_weight:
            continue
            
        # ! qkv_proj is sharded differently if concatenated into qkv
        # qkv:      qqqq kkkk vvvv
        # lweight:  qq0qq1 kk0kk1 vv0vv1
        # q_shard_size: hidden_size // tp_size = qq
        # qkv_s0:   qq0_kk0_vv0
        # qkv_s1:   qq1_kk1_vv1
        if "qkv_proj" in name:
            param = state_dict[name]
            # loaded_weight
            qsize = self.config.hidden_size
            kvsize = self.config.hidden_size // self.config.num_attention_heads * getattr(self.config, "num_key_value_heads", self.config.num_attention_heads)
            q_offsets = (
                q_proj_shard_size * tensor_model_parallel_rank, 
                q_proj_shard_size * (tensor_model_parallel_rank + 1)
            )
            k_offsets = (
                qsize + kv_proj_shard_size * tensor_model_parallel_rank, 
                qsize + kv_proj_shard_size * (tensor_model_parallel_rank + 1)
            )
            v_offsets = (
                qsize + kvsize + kv_proj_shard_size * tensor_model_parallel_rank, 
                qsize + kvsize + kv_proj_shard_size * (tensor_model_parallel_rank + 1)
            )
            _loaded_weight = torch.cat(
                [
                    loaded_weight[q_offsets[0]:q_offsets[1]],
                    loaded_weight[k_offsets[0]:k_offsets[1]],
                    loaded_weight[v_offsets[0]:v_offsets[1]],
                ], 0
            )
            # print(f'{name} | {q_offsets} | {k_offsets} | {v_offsets}')
            assert param.shape == _loaded_weight.shape, f'{param.shape=} != {_loaded_weight.shape=}'
            param.data.copy_(_loaded_weight)
            loaded += 1.0
            is_attention_weight = True
        if is_attention_weight:
            continue


        is_gate_up_weight = False
        for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
            if weight_name not in name or "gate_up_proj" in name:
                continue
            param = state_dict[name.replace(weight_name, "gate_up_proj")]
            shard_size = param.shape[0] // 2
            loaded_weight = loaded_weight[
                shard_size * tensor_model_parallel_rank:shard_size *
                (tensor_model_parallel_rank + 1)]
            param_slice = param.data[shard_size * stride_id:shard_size *
                                        (stride_id + 1)]
            assert param_slice.shape == loaded_weight.shape
            param_slice.copy_(loaded_weight)
            loaded += 1.0 / 2
            is_gate_up_weight = True
            break
        if is_gate_up_weight:
            continue
            
        if "gate_up_proj" in name:
            param = state_dict[name]
            shard_size = param.shape[0] // 2
            intermediate_size = self.config.intermediate_size
            g_offsets = (
                shard_size * tensor_model_parallel_rank, 
                shard_size * (tensor_model_parallel_rank + 1)
            )
            u_offsets = (
                intermediate_size + shard_size * tensor_model_parallel_rank, 
                intermediate_size + shard_size * (tensor_model_parallel_rank + 1)
            )
            # print(f'{name} {param.size()} | {g_offsets} | {u_offsets}')
            _loaded_weight = torch.cat(
                [
                    loaded_weight[g_offsets[0]:g_offsets[1]],
                    loaded_weight[u_offsets[0]:u_offsets[1]],
                ], 0
            )
            assert param.shape == _loaded_weight.shape
            param.data.copy_(_loaded_weight)
            loaded += 1.0
            is_gate_up_weight = True
        if is_gate_up_weight:
            continue


        param = state_dict[name]
        load_tensor_parallel_weights(param, loaded_weight, name,
                                        self._column_parallel_weights,
                                        self._row_parallel_weights,
                                        tensor_model_parallel_rank)
        loaded += 1

    if np.abs(loaded - need_to_load) < 0.01:
        print(f'WARNING: only {loaded} params loaded out of {need_to_load}')
    else:
        print(f'Loaded all {loaded} params loaded out of {need_to_load}')


# Reassign LlamaForCausalLM.load_weights with llama_load_weights
if not DEBUG:
    LlamaForCausalLM.load_weights = llama_load_weights

# ! ==================================================================

set_documentation_group("component")

DATA_ROOT = os.environ.get("dataroot", "/mnt/workspace/workgroup/phi")
MODEL_CACHE_DIR = os.path.join(DATA_ROOT, "pret_models")


DTYPES = {
    'float16': torch.float16,
    'bfloat16': torch.bfloat16
}

llm = None
demo = None

RELOAD_SIGNAL = '<<<reload:'

BOS_TOKEN = '<s>'
EOS_TOKEN = '</s>'

B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"

SYSTEM_PROMPT_1 = """You are a multilingual, helpful, respectful and honest assistant. Your name is SeaL and you are built by DAMO Academy, Alibaba Group. Always answer as helpfully as possible, while being safe. Your \
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
 that your responses are socially unbiased and positive in nature.

If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
correct. If you don't know the answer to a question, please don't share false information.

As a multilingual assistant, you must respond and follow instructions in the native language of the user by default, unless told otherwise. \
Your response should adapt to the norms and customs of the respective language and culture.
"""

RES_PRINTED = False

def llama_chat_sys_input_seq_constructor(text, sys_prompt=SYSTEM_PROMPT_1, bos_token=BOS_TOKEN, eos_token=EOS_TOKEN):
    return f"{bos_token}{B_INST} {B_SYS} {sys_prompt} {E_SYS} {text} {E_INST}"


def llama_chat_multiturn_sys_input_seq_constructor(
    message: str,
    history: List[Tuple[str, str]], 
    sys_prompt=SYSTEM_PROMPT_1, 
    bos_token=BOS_TOKEN, 
    eos_token=EOS_TOKEN,
):
    """
    ```
        <bos>[INST] B_SYS SytemPrompt E_SYS Prompt [/INST] Answer <eos>
        <bos>[INST] Prompt [/INST] Answer <eos>
        <bos>[INST] Prompt [/INST]
    ```
    """
    text = ''
    for i, (prompt, res) in enumerate(history):
        if i == 0:
            text += f"{bos_token}{B_INST} {B_SYS} {sys_prompt} {E_SYS} {prompt} {E_INST}"
        else:
            text += f"{bos_token}{B_INST} {prompt} {E_INST}"

        if res is not None:
            text += f" {res} {eos_token} "
    if len(history) == 0 or text.strip() == '':
        text = f"{bos_token}{B_INST} {B_SYS} {sys_prompt} {E_SYS} {message} {E_INST}"
    else:
        text += f"{bos_token}{B_INST} {message} {E_INST}"
    return text


@document()
class ChatBot(gr.Chatbot):
    def _postprocess_chat_messages(
        self, chat_message
    ):
        x = super()._postprocess_chat_messages(chat_message)
        if isinstance(x, str):
            x = x.replace("\n", "<br>")
        return x


def load_ckpt(ckpt_file: str) -> str:
    global llm
    status = "Failed"
    if not os.path.exists(ckpt_file):
        status = f"Failed - file not found: {ckpt_file}"
    elif not ckpt_file.endswith(".bin"):
        status = f"Failed - file not .bin: {ckpt_file}"
    else:
        try:
            state_dict = torch.load(ckpt_file, map_location='cpu')
            print(f'loaded state_dict: {ckpt_file}')
            llm.llm_engine.workers[0].model.load_state_dict(state_dict)
            status = f'Success. Loaded {ckpt_file}'
        except Exception as e:
            status = f'Failed - {str(e)}'
    return status



def chat_response(message, history, temperature: float, max_tokens: int, system_prompt: str = '') -> str:
    global llm
    assert llm is not None
    temperature = float(temperature)
    max_tokens = int(max_tokens)
    if system_prompt.strip() != '':
        # chat version, add system prompt
        message = llama_chat_sys_input_seq_constructor(
            message.strip(),
            sys_prompt=system_prompt
        )

    sampling_params = SamplingParams(temperature=temperature, max_tokens=max_tokens)
    gen = llm.generate(message, sampling_params)
    out = gen[0].outputs[0].text
    # print(f'{message}<<<{out}>>>')
    return f'{out}'


def vllm_abort(self: Any):
    scheduler = self.llm_engine.scheduler
    for state_queue in [scheduler.waiting, scheduler.running, scheduler.swapped]:
        for seq_group in state_queue:
            # if seq_group.request_id == request_id:
            # Remove the sequence group from the state queue.
            state_queue.remove(seq_group)
            for seq in seq_group.seqs:
                if seq.is_finished():
                    continue
                scheduler.free_seq(seq, SequenceStatus.FINISHED_ABORTED)

# def _vllm_run_engine(self: LLM, use_tqdm: bool = False) -> Dict[str, RequestOutput]:
def _vllm_run_engine(self: Any, use_tqdm: bool = False) -> Dict[str, Any]:
    # Initialize tqdm.
    if use_tqdm:
        num_requests = self.llm_engine.get_num_unfinished_requests()
        pbar = tqdm(total=num_requests, desc="Processed prompts")
    # Run the engine.
    outputs: Dict[str, RequestOutput] = {}
    while self.llm_engine.has_unfinished_requests():
        step_outputs = self.llm_engine.step()
        for output in step_outputs:
            # if output.finished:
            #     outputs.append(output)
                # if use_tqdm:
                #     pbar.update(1)
            outputs[output.request_id] = output
        # outputs = sorted(outputs, key=lambda x: int(x.request_id))
        if len(outputs) > 0:
            yield outputs
    # if use_tqdm:
    #     pbar.close()
    # Sort the outputs by request ID.
    # This is necessary because some requests may be finished earlier than
    # its previous requests.
    # outputs = sorted(outputs, key=lambda x: int(x.request_id))
    # return outputs


def vllm_generate_stream(
    self: Any,
    prompts: Optional[Union[str, List[str]]] = None,
    sampling_params: Optional[Any] = None,
    prompt_token_ids: Optional[List[List[int]]] = None,
    use_tqdm: bool = False,
) -> Dict[str, Any]:
    """Generates the completions for the input prompts.

    NOTE: This class automatically batches the given prompts, considering
    the memory constraint. For the best performance, put all of your prompts
    into a single list and pass it to this method.

    Args:
        prompts: A list of prompts to generate completions for.
        sampling_params: The sampling parameters for text generation. If
            None, we use the default sampling parameters.
        prompt_token_ids: A list of token IDs for the prompts. If None, we
            use the tokenizer to convert the prompts to token IDs.
        use_tqdm: Whether to use tqdm to display the progress bar.

    Returns:
        A list of `RequestOutput` objects containing the generated
        completions in the same order as the input prompts.
    """
    if prompts is None and prompt_token_ids is None:
        raise ValueError("Either prompts or prompt_token_ids must be "
                            "provided.")
    if isinstance(prompts, str):
        # Convert a single prompt to a list.
        prompts = [prompts]
    if prompts is not None and prompt_token_ids is not None:
        if len(prompts) != len(prompt_token_ids):
            raise ValueError("The lengths of prompts and prompt_token_ids "
                                "must be the same.")
    if sampling_params is None:
        # Use default sampling params.
        sampling_params = SamplingParams()

    # Add requests to the engine.
    if prompts is not None:
        num_requests = len(prompts)
    else:
        num_requests = len(prompt_token_ids)
    for i in range(num_requests):
        prompt = prompts[i] if prompts is not None else None
        if prompt_token_ids is None:
            token_ids = None
        else:
            token_ids = prompt_token_ids[i]
        self._add_request(prompt, sampling_params, token_ids)
    # return self._run_engine(use_tqdm)
    yield from _vllm_run_engine(self, use_tqdm)


def chat_response_stream(
    message: str, 
    history: List[Tuple[str, str]], 
    temperature: float, 
    max_tokens: int, 
    frequency_penalty: float,
    system_prompt: str
) -> str:
    global llm, RES_PRINTED
    assert llm is not None
    # force removing all 
    vllm_abort(llm)

    temperature = float(temperature)
    frequency_penalty = float(frequency_penalty)
    max_tokens = int(max_tokens)
    if system_prompt.strip() != '':
        # chat version, add system prompt
        message = llama_chat_sys_input_seq_constructor(
            message.strip(),
            sys_prompt=system_prompt
        )
    sampling_params = SamplingParams(
        temperature=temperature, max_tokens=max_tokens,
        frequency_penalty=frequency_penalty,
    )
    cur_out = None
    for gen in vllm_generate_stream(llm, message, sampling_params):
        if cur_out is not None:
            yield cur_out
        assert len(gen) == 1, f'{gen}'
        item = next(iter(gen.values()))
        cur_out = item.outputs[0].text
    if not RES_PRINTED:
        print(f'{message}<<<{cur_out}>>>')
        RES_PRINTED = True
    if cur_out is not None:
        yield cur_out


def chat_response_stream_multiturn(
    message: str, 
    history: List[Tuple[str, str]], 
    temperature: float, 
    max_tokens: int, 
    frequency_penalty: float,
    system_prompt: str
) -> str:
    """Build multi turn
    <bos>[INST] B_SYS SytemPrompt E_SYS Prompt [/INST] Answer <eos>
    <bos>[INST] Prompt [/INST] Answer <eos>
    <bos>[INST] Prompt [/INST]

    message is incoming prompt
    history don't have the current messauge
    """
    global llm, RES_PRINTED
    assert llm is not None
    assert system_prompt.strip() != '', f'system prompt is empty'
    # force removing all 
    vllm_abort(llm)

    temperature = float(temperature)
    frequency_penalty = float(frequency_penalty)
    max_tokens = int(max_tokens)

    # history.append([message, None])
    # history will be appended with message later on
    full_prompt = llama_chat_multiturn_sys_input_seq_constructor(
        message, history, sys_prompt=system_prompt
    )
    sampling_params = SamplingParams(
        temperature=temperature, max_tokens=max_tokens,
        frequency_penalty=frequency_penalty,
    )
    cur_out = None
    for gen in vllm_generate_stream(llm, full_prompt, sampling_params):
        if cur_out is not None:
            yield cur_out
        assert len(gen) == 1, f'{gen}'
        item = next(iter(gen.values()))
        cur_out = item.outputs[0].text
    if not RES_PRINTED:
        print(f'{full_prompt}<<<{cur_out}>>>')
        RES_PRINTED = True
    if cur_out is not None:
        yield cur_out


def debug_chat_response_echo(
    message: str, 
    history: List[Tuple[str, str]], 
    temperature: float = 0.0, 
    max_tokens: int = 4096, 
    frequency_penalty: float = 0.4,
    system_prompt: str = SYSTEM_PROMPT_1,
) -> str:
    yield f"repeat: {message}"


# ============ CONSTANT ============
MODEL_TITLE = "DAMO-SeaL-13B - An Assistant for South East Asian Languages"
MODEL_DESC = """
This is a 13B DAMO-SeaL-Chat assistant model built by DAMO Academy, Alibaba Group. It can produce helpful responses in English, Vietnamese, Indonesian and Thai.
""".strip()


cite_markdown = """
## Citation
If you find our project useful, hope you can star our repo and cite our paper as follows:
```
@article{damonlpsg2023seallm,
  author = {???},
  title = {SeaL: A language model for South East Asian Languages},
  year = 2023,
}
"""
#   journal = {arXiv preprint arXiv:2306.02858}
#   url = {https://arxiv.org/abs/2306.02858}


TENSOR_PARALLEL = int(os.environ.get("TENSOR_PARALLEL", "1"))
DTYPE = 'bfloat16'
DTYPE = 'float16'

MODEL_PATH = os.environ.get("MODEL_PATH", "notfound, please set `export MODEL_PATH=`")




def launch():
    global demo, llm, DEBUG
    model_desc = MODEL_DESC
    model_path = MODEL_PATH
    assert os.path.exists(model_path), f'{model_path} not found'
    model_title = MODEL_TITLE
    tensor_parallel = TENSOR_PARALLEL
    assert tensor_parallel > 0 , f'{tensor_parallel} invalid'
    dtype = DTYPE
    sys_prompt = SYSTEM_PROMPT_1
    max_tokens = 4096

    if DEBUG:
        model_desc += "<br>!!!!! This is in debug mode, responses will be copy original"
        response_fn = debug_chat_response_echo
    else:
        # ! load the model
        llm = LLM(model=model_path, dtype=dtype, tensor_parallel_size=tensor_parallel)

        print(f'Use system prompt:\n{sys_prompt}')

        # response_fn = chat_response_stream_multiturn if args.multiturn else chat_response_stream
        response_fn = chat_response_stream_multiturn
        print(F'respond: {response_fn}')

    demo = gr.ChatInterface(
        response_fn,
        chatbot=ChatBot(
            bubble_full_width=False,
            latex_delimiters=[
                { "left": "$", "right": "$", "display": False},
                { "left": "$$", "right": "$$", "display": True},
            ]
        ),
        textbox=gr.Textbox(placeholder='Type message', lines=8, max_lines=128, min_width=200),
        submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
        # stop_btn=None,
        title=f"{model_title}",
        description=f"{model_desc}",
        # ! decide if can change the system prompt.
        additional_inputs=[
            gr.Number(value=0, label='Temperature (higher -> more random)'), 
            gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'), 
            gr.Number(value=0.4, label='Frequency penalty (> 0 encourage new tokens)'), 
            gr.Textbox(value=sys_prompt, label='System prompt', lines=8)], 
    )

    gr.Markdown(cite_markdown)
    demo.queue()
    # demo.launch(server_port=args.port)
    demo.launch()


def main():

    # launch(parser.parse_args())
    launch()


if __name__ == "__main__":
    main()


"""

export CUDA_VISIBLE_DEVICES=0
export MODEL_PATH=${dataroot}/hf_train/pretrain_lm/swpn/merlion13s108Hi8kPretFlCW8k.LMFromHf.a.gc.t5k0.vizhthid.mean_std.TrainTask.NLNL.Multi.Vi.FSePlCq13M.FSePlCq13M.m4k.b8.lr1e5.linear.wa0k.ms858k.grac1.se1.8g.v4c.zfsdp/step_4000
export MODEL_PATH=${dataroot}/llama-2-7b-lxxp-faster
export MODEL_PATH=${dataroot}/llama-2-7b-chat-xp
python app.py 


"""