SeaLLM-Chat / multipurpose_chatbot /engines /transformers_engine.py
isakzhang's picture
Update multipurpose_chatbot/engines/transformers_engine.py
6e1fb38 verified
try:
import spaces
def maybe_spaces_gpu(fn):
fn = spaces.GPU(fn)
return fn
except ModuleNotFoundError:
print(f'Cannot import hf `spaces` with `import spaces`.')
def maybe_spaces_gpu(fn):
return fn
import os
import numpy as np
import argparse
import torch
import sys
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json
import time
from gradio.routes import Request
from gradio.utils import SyncToAsyncIterator, async_iteration
from gradio.helpers import special_args
import anyio
from typing import AsyncGenerator, Callable, Literal, Union, cast
from gradio_client.documentation import document, set_documentation_group
from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download
import types
from gradio.components import Button
from gradio.events import Dependency, EventListenerMethod
from .base_engine import BaseEngine
# ! Remember to use static cache
from transformers import (
GenerationConfig,
GenerationMixin,
LogitsProcessorList,
StoppingCriteriaList,
DisjunctiveConstraint,
BeamSearchScorer,
PhrasalConstraint,
ConstrainedBeamSearchScorer,
PreTrainedModel,
)
import numpy as np
import random
import warnings
import inspect
from transformers.generation.utils import GenerateOutput, SampleOutput, logger
import torch
from typing import Callable, List, Optional, Union
from torch import nn
import torch.distributed as dist
import copy
from ..configs import (
MODEL_PATH,
DTYPE,
DEVICE,
STREAM_CHECK_MULTIPLE,
STREAM_YIELD_MULTIPLE,
)
def setup_seed(seed):
if seed == -1:
return
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
class NewGenerationMixin(GenerationMixin):
"""
Allow generator sampling
"""
# ! Copy from transformers.generation.utils -> GenerationMixin
# Change sample function to sample_stream
@torch.no_grad()
def sample_stream(
self,
input_ids: torch.LongTensor,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
logits_warper: Optional[LogitsProcessorList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
output_logits: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: bool = False,
streamer: Optional["BaseStreamer"] = None,
**model_kwargs,
):
r"""
Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
<Tip warning={true}>
In most cases, you do not need to call [`~generation.GenerationMixin.sample`] directly. Use generate() instead.
For an overview of generation strategies and code examples, check the [following
guide](../generation_strategies).
</Tip>
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
logits_processor (`LogitsProcessorList`, *optional*):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`, *optional*):
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
logits_warper (`LogitsProcessorList`, *optional*):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
to warp the prediction score distribution of the language modeling head applied before multinomial
sampling at each generation step.
max_length (`int`, *optional*, defaults to 20):
**DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
tokens. The maximum length of the sequence to be generated.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
eos_token_id (`Union[int, List[int]]`, *optional*):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
output_logits (`bool`, *optional*, defaults to `False`):
Whether or not to return the raw prediction logit scores. See `logits` under returned tensors for
more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
model_kwargs:
Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`:
A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
Examples:
```python
>>> from transformers import (
... AutoTokenizer,
... AutoModelForCausalLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... TopKLogitsWarper,
... TemperatureLogitsWarper,
... StoppingCriteriaList,
... MaxLengthCriteria,
... )
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
>>> model.config.pad_token_id = model.config.eos_token_id
>>> model.generation_config.pad_token_id = model.config.eos_token_id
>>> input_prompt = "Today is a beautiful day, and"
>>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList(
... [
... MinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id),
... ]
... )
>>> # instantiate logits processors
>>> logits_warper = LogitsProcessorList(
... [
... TopKLogitsWarper(50),
... TemperatureLogitsWarper(0.7),
... ]
... )
>>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])
>>> torch.manual_seed(0) # doctest: +IGNORE_RESULT
>>> outputs = model.sample(
... input_ids,
... logits_processor=logits_processor,
... logits_warper=logits_warper,
... stopping_criteria=stopping_criteria,
... )
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Today is a beautiful day, and we must do everything possible to make it a day of celebration.']
```"""
# init values
from transformers.generation.utils import (
validate_stopping_criteria, GenerateEncoderDecoderOutput, GenerateDecoderOnlyOutput
)
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if max_length is not None:
warnings.warn(
"`max_length` is deprecated in this function, use"
" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
UserWarning,
)
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
output_logits = output_logits if output_logits is not None else self.generation_config.output_logits
output_attentions = (
output_attentions if output_attentions is not None else self.generation_config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate
if return_dict_in_generate is not None
else self.generation_config.return_dict_in_generate
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# keep track of which sequences are already finished
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
this_peer_finished = False # used by synced_gpus only
# auto-regressive generation
while True:
if synced_gpus:
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
# The following logic allows an early break if all peers finished generating their sequence
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
# send 0.0 if we finished, 1.0 otherwise
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
# did all peers finish? the reduced sum will be 0.0 then
if this_peer_finished_flag.item() == 0.0:
break
# prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if synced_gpus and this_peer_finished:
continue # don't waste resources running the code we don't need
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_logits:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
yield next_tokens.cpu()
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if streamer is not None:
streamer.put(next_tokens.cpu())
next_model_inputs = {}
if "cache_position" in model_inputs:
next_model_inputs['cache_position'] = model_inputs['cache_position']
try:
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder,
# model_inputs=model_inputs
model_inputs=next_model_inputs,
)
except Exception as e:
# ! some transformers version don't have model_inputs in generation
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder,
# model_inputs=model_inputs
# model_inputs=next_model_inputs,
)
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id_tensor is not None:
unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
)
# stop when each sentence is finished
if unfinished_sequences.max() == 0:
this_peer_finished = True
# stop if we exceed the maximum length
if stopping_criteria(input_ids, scores):
this_peer_finished = True
if this_peer_finished and not synced_gpus:
break
if streamer is not None:
streamer.end()
# if return_dict_in_generate:
# if self.config.is_encoder_decoder:
# return GenerateEncoderDecoderOutput(
# sequences=input_ids,
# scores=scores,
# logits=raw_logits,
# encoder_attentions=encoder_attentions,
# encoder_hidden_states=encoder_hidden_states,
# decoder_attentions=decoder_attentions,
# cross_attentions=cross_attentions,
# decoder_hidden_states=decoder_hidden_states,
# past_key_values=model_kwargs.get("past_key_values"),
# )
# else:
# return GenerateDecoderOnlyOutput(
# sequences=input_ids,
# scores=scores,
# logits=raw_logits,
# attentions=decoder_attentions,
# hidden_states=decoder_hidden_states,
# past_key_values=model_kwargs.get("past_key_values"),
# )
# else:
# return input_ids
BLOCK_LANGS = str(os.environ.get("BLOCK_LANGS", ""))
BLOCK_LANGS = [x.strip() for x in BLOCK_LANGS.strip().split(";")] if len(BLOCK_LANGS.strip()) > 0 else []
LANG_BLOCK_HISTORY = bool(int(os.environ.get("LANG_BLOCK_HISTORY", "0")))
KEYWORDS = os.environ.get("KEYWORDS", "").strip()
KEYWORDS = KEYWORDS.split(";") if len(KEYWORDS) > 0 else []
KEYWORDS = [x.lower() for x in KEYWORDS]
LANG_BLOCK_MESSAGE = """Unsupported language."""
KEYWORD_BLOCK_MESSAGE = "Invalid request."
def _detect_lang(text):
# Disable language that may have safety risk
from langdetect import detect as detect_lang
dlang = None
try:
dlang = detect_lang(text)
except Exception as e:
if "No features in text." in str(e):
return "en"
else:
return "zh"
return dlang
def block_lang(
message: str,
history: List[Tuple[str, str]] = None,
) -> str:
# relieve history base block
if len(BLOCK_LANGS) == 0:
return False
if LANG_BLOCK_HISTORY and history is not None and any((LANG_BLOCK_MESSAGE in x[1].strip()) for x in history):
return True
else:
_lang = _detect_lang(message)
if _lang in BLOCK_LANGS:
# print(f'Detect blocked {_lang}: {message}')
return True
else:
return False
def safety_check(text, history=None, ) -> Optional[str]:
"""
Despite our effort in safety tuning and red teaming, our models may still generate harmful or illegal content.
This provides an additional security measure to enhance safety and compliance with local regulations.
"""
if len(KEYWORDS) > 0 and any(x in text.lower() for x in KEYWORDS):
return KEYWORD_BLOCK_MESSAGE
if len(BLOCK_LANGS) > 0:
if block_lang(text, history):
return LANG_BLOCK_MESSAGE
return None
def safety_check_conversation_string(text, delimiter=None) -> Optional[str]:
if len(KEYWORDS) > 0 and any(x in text.lower() for x in KEYWORDS):
return KEYWORD_BLOCK_MESSAGE
if len(BLOCK_LANGS) > 0:
import re
delimiter = delimiter or (r"</s><\|im_start\|>user\n", r"</s><\|im_start\|>assistant\n", r"<\|im_start\|>system\n")
turns = re.split(r"|".join(delimiter), text)
turns = [t for t in turns if t.strip() != '']
for t in turns:
if block_lang(t):
return LANG_BLOCK_MESSAGE
return None
def is_check_safety():
return len(KEYWORDS) > 0 or len(BLOCK_LANGS) > 0
def safety_check_conversation(conversation) -> Optional[str]:
"""
Despite our effort in safety tuning and red teaming, our models may still generate harmful or illegal content.
This provides an additional security measure to enhance safety and compliance with local regulations.
"""
texts = [c['content'] for c in conversation]
for text in texts:
if len(KEYWORDS) > 0 and any(x in text.lower() for x in KEYWORDS):
return KEYWORD_BLOCK_MESSAGE
if len(BLOCK_LANGS) > 0:
if block_lang(text):
return LANG_BLOCK_MESSAGE
return None
class TransformersEngine(BaseEngine):
@property
def max_position_embeddings(self) -> int:
return self._model.config.max_position_embeddings
@property
def tokenizer(self):
return self._tokenizer
def load_model(self):
from transformers import AutoTokenizer, AutoModelForCausalLM
import sys
# caution: path[0] is reserved for script path (or '' in REPL)
# sys.path.append(CODE_PATH)
self.model_path = model_path = MODEL_PATH
self.torch_dtype = torch.bfloat16 if DTYPE == 'bfloat16' else torch.float16
self.device_map = DEVICE
print(f'Loading model from {model_path} on {self.device_map} with {self.torch_dtype}')
self._tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
assert self._tokenizer.chat_template is not None and self._tokenizer.chat_template != "", f"{self._tokenizer.chat_template=} not found!"
self._model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=self.torch_dtype, device_map=self.device_map, trust_remote_code=True).eval()
self._model.sample_old = self._model.sample
self._model._sample = types.MethodType(NewGenerationMixin.sample_stream, self._model)
print(self._model)
print(f"{self.max_position_embeddings=}")
def maybe_raise_safety(self, message, gen_index=-1):
if is_check_safety():
if gen_index < 0:
message_safety = safety_check_conversation_string(message)
if message_safety is not None:
raise gr.Error(message_safety)
else:
if STREAM_CHECK_MULTIPLE > 0 and gen_index % STREAM_CHECK_MULTIPLE == 0:
message_safety = safety_check_conversation_string(message)
if message_safety is not None:
raise gr.Error(message_safety)
# @maybe_spaces_gpu
def generate_yield_string(self, prompt, temperature=0.7, max_tokens=1024, stop_strings: Optional[Tuple[str]] = None, **kwargs):
# ! MUST PUT INSIDE torch.no_grad() otherwise it will overflow OOM
import sys
# self._model._sample = types.MethodType(NewGenerationMixin.sample_stream, self._model)
self._model.sample = types.MethodType(NewGenerationMixin.sample_stream, self._model)
self.maybe_raise_safety(prompt)
if temperature == 0:
temperature = 0.0001
try:
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors='pt')
# whether to print the full prompts
retok_full_prompt = self.tokenizer.decode(inputs.input_ids[0], skip_special_tokens=False)
# print(f"retok_full_prompt:\n{retok_full_prompt}>>>>")
begin_bos = inputs.input_ids[0][0] == self.tokenizer.bos_token_id
print(f'begin_bos: {begin_bos}')
num_tokens = inputs.input_ids.size(1)
inputs = inputs.to(self._model.device)
generator = self._model.generate(
**inputs,
do_sample=True,
temperature=temperature,
max_new_tokens=max_tokens,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
)
out_tokens = []
response = None
for index, token in enumerate(generator):
out_tokens.extend(token.tolist())
response = self.tokenizer.decode(out_tokens, skip_special_tokens=True)
if "<|im_start|>assistant\n" in response:
response = response.split("<|im_start|>assistant\n")[-1]
num_tokens += 1
# print(f"{response}", end='\r')
# sys.stdout.flush()
self.maybe_raise_safety(response, gen_index=index)
yield response, num_tokens
del generator
if response is not None:
if "<|im_start|>assistant\n" in response:
response = response.split("<|im_start|>assistant\n")[-1]
self.maybe_raise_safety(response)
full_text = prompt + response
num_tokens = len(self.tokenizer.encode(full_text))
yield response, num_tokens
except RuntimeError as e:
raise gr.Error(str(e))