Spaces:
Running
on
Zero
Running
on
Zero
Update multipurpose_chatbot/engines/transformers_engine.py
Browse files
multipurpose_chatbot/engines/transformers_engine.py
CHANGED
@@ -397,6 +397,109 @@ class NewGenerationMixin(GenerationMixin):
|
|
397 |
|
398 |
|
399 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
class TransformersEngine(BaseEngine):
|
401 |
@property
|
402 |
def max_position_embeddings(self) -> int:
|
@@ -424,6 +527,18 @@ class TransformersEngine(BaseEngine):
|
|
424 |
print(self._model)
|
425 |
print(f"{self.max_position_embeddings=}")
|
426 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
@spaces.GPU
|
428 |
def generate_yield_string(self, prompt, temperature, max_tokens, stop_strings: Optional[Tuple[str]] = None, **kwargs):
|
429 |
|
@@ -431,6 +546,9 @@ class TransformersEngine(BaseEngine):
|
|
431 |
import sys
|
432 |
# self._model._sample = types.MethodType(NewGenerationMixin.sample_stream, self._model)
|
433 |
self._model.sample = types.MethodType(NewGenerationMixin.sample_stream, self._model)
|
|
|
|
|
|
|
434 |
with torch.no_grad():
|
435 |
inputs = self.tokenizer(prompt, return_tensors='pt')
|
436 |
num_tokens = inputs.input_ids.size(1)
|
@@ -447,7 +565,7 @@ class TransformersEngine(BaseEngine):
|
|
447 |
|
448 |
out_tokens = []
|
449 |
response = None
|
450 |
-
for token in generator:
|
451 |
out_tokens.extend(token.tolist())
|
452 |
response = self.tokenizer.decode(out_tokens)
|
453 |
if "<|im_start|>assistant\n" in response:
|
@@ -455,11 +573,15 @@ class TransformersEngine(BaseEngine):
|
|
455 |
num_tokens += 1
|
456 |
# print(f"{response}", end='\r')
|
457 |
# sys.stdout.flush()
|
|
|
458 |
yield response, num_tokens
|
459 |
-
|
|
|
460 |
if response is not None:
|
461 |
if "<|im_start|>assistant\n" in response:
|
462 |
response = response.split("<|im_start|>assistant\n")[-1]
|
|
|
|
|
463 |
full_text = prompt + response
|
464 |
num_tokens = len(self.tokenizer.encode(full_text))
|
465 |
yield response, num_tokens
|
|
|
397 |
|
398 |
|
399 |
|
400 |
+
|
401 |
+
from ..configs import (
|
402 |
+
STREAM_CHECK_MULTIPLE,
|
403 |
+
STREAM_YIELD_MULTIPLE,
|
404 |
+
)
|
405 |
+
|
406 |
+
|
407 |
+
BLOCK_LANGS = str(os.environ.get("BLOCK_LANGS", ""))
|
408 |
+
BLOCK_LANGS = [x.strip() for x in BLOCK_LANGS.strip().split(";")] if len(BLOCK_LANGS.strip()) > 0 else []
|
409 |
+
LANG_BLOCK_HISTORY = bool(int(os.environ.get("LANG_BLOCK_HISTORY", "0")))
|
410 |
+
KEYWORDS = os.environ.get("KEYWORDS", "").strip()
|
411 |
+
KEYWORDS = KEYWORDS.split(";") if len(KEYWORDS) > 0 else []
|
412 |
+
KEYWORDS = [x.lower() for x in KEYWORDS]
|
413 |
+
|
414 |
+
LANG_BLOCK_MESSAGE = """Unsupported language."""
|
415 |
+
|
416 |
+
KEYWORD_BLOCK_MESSAGE = "Invalid request."
|
417 |
+
|
418 |
+
|
419 |
+
def _detect_lang(text):
|
420 |
+
# Disable language that may have safety risk
|
421 |
+
from langdetect import detect as detect_lang
|
422 |
+
dlang = None
|
423 |
+
try:
|
424 |
+
dlang = detect_lang(text)
|
425 |
+
except Exception as e:
|
426 |
+
if "No features in text." in str(e):
|
427 |
+
return "en"
|
428 |
+
else:
|
429 |
+
return "zh"
|
430 |
+
return dlang
|
431 |
+
|
432 |
+
|
433 |
+
def block_lang(
|
434 |
+
message: str,
|
435 |
+
history: List[Tuple[str, str]] = None,
|
436 |
+
) -> str:
|
437 |
+
# relieve history base block
|
438 |
+
if len(BLOCK_LANGS) == 0:
|
439 |
+
return False
|
440 |
+
|
441 |
+
if LANG_BLOCK_HISTORY and history is not None and any((LANG_BLOCK_MESSAGE in x[1].strip()) for x in history):
|
442 |
+
return True
|
443 |
+
else:
|
444 |
+
_lang = _detect_lang(message)
|
445 |
+
if _lang in BLOCK_LANGS:
|
446 |
+
# print(f'Detect blocked {_lang}: {message}')
|
447 |
+
return True
|
448 |
+
else:
|
449 |
+
return False
|
450 |
+
|
451 |
+
def safety_check(text, history=None, ) -> Optional[str]:
|
452 |
+
"""
|
453 |
+
Despite our effort in safety tuning and red teaming, our models may still generate harmful or illegal content.
|
454 |
+
This provides an additional security measure to enhance safety and compliance with local regulations.
|
455 |
+
"""
|
456 |
+
if len(KEYWORDS) > 0 and any(x in text.lower() for x in KEYWORDS):
|
457 |
+
return KEYWORD_BLOCK_MESSAGE
|
458 |
+
|
459 |
+
if len(BLOCK_LANGS) > 0:
|
460 |
+
if block_lang(text, history):
|
461 |
+
return LANG_BLOCK_MESSAGE
|
462 |
+
|
463 |
+
return None
|
464 |
+
|
465 |
+
|
466 |
+
def safety_check_conversation_string(text, delimiter=None) -> Optional[str]:
|
467 |
+
if len(KEYWORDS) > 0 and any(x in text.lower() for x in KEYWORDS):
|
468 |
+
return KEYWORD_BLOCK_MESSAGE
|
469 |
+
if len(BLOCK_LANGS) > 0:
|
470 |
+
import re
|
471 |
+
delimiter = delimiter or (r"</s><\|im_start\|>user\n", r"</s><\|im_start\|>assistant\n", r"<\|im_start\|>system\n")
|
472 |
+
turns = re.split(r"|".join(delimiter), text)
|
473 |
+
turns = [t for t in turns if t.strip() != '']
|
474 |
+
for t in turns:
|
475 |
+
if block_lang(t):
|
476 |
+
return LANG_BLOCK_MESSAGE
|
477 |
+
return None
|
478 |
+
|
479 |
+
|
480 |
+
def is_check_safety():
|
481 |
+
return len(KEYWORDS) > 0 or len(BLOCK_LANGS) > 0
|
482 |
+
|
483 |
+
|
484 |
+
def safety_check_conversation(conversation) -> Optional[str]:
|
485 |
+
"""
|
486 |
+
Despite our effort in safety tuning and red teaming, our models may still generate harmful or illegal content.
|
487 |
+
This provides an additional security measure to enhance safety and compliance with local regulations.
|
488 |
+
"""
|
489 |
+
texts = [c['content'] for c in conversation]
|
490 |
+
for text in texts:
|
491 |
+
if len(KEYWORDS) > 0 and any(x in text.lower() for x in KEYWORDS):
|
492 |
+
return KEYWORD_BLOCK_MESSAGE
|
493 |
+
|
494 |
+
if len(BLOCK_LANGS) > 0:
|
495 |
+
if block_lang(text):
|
496 |
+
return LANG_BLOCK_MESSAGE
|
497 |
+
return None
|
498 |
+
|
499 |
+
|
500 |
+
|
501 |
+
|
502 |
+
|
503 |
class TransformersEngine(BaseEngine):
|
504 |
@property
|
505 |
def max_position_embeddings(self) -> int:
|
|
|
527 |
print(self._model)
|
528 |
print(f"{self.max_position_embeddings=}")
|
529 |
|
530 |
+
def maybe_raise_safety(self, message, gen_index=-1):
|
531 |
+
if is_check_safety():
|
532 |
+
if gen_index < 0:
|
533 |
+
message_safety = safety_check_conversation_string(message)
|
534 |
+
if message_safety is not None:
|
535 |
+
raise gr.Error(message_safety)
|
536 |
+
else:
|
537 |
+
if STREAM_CHECK_MULTIPLE > 0 and gen_index % STREAM_CHECK_MULTIPLE == 0:
|
538 |
+
message_safety = safety_check_conversation_string(message)
|
539 |
+
if message_safety is not None:
|
540 |
+
raise gr.Error(message_safety)
|
541 |
+
|
542 |
@spaces.GPU
|
543 |
def generate_yield_string(self, prompt, temperature, max_tokens, stop_strings: Optional[Tuple[str]] = None, **kwargs):
|
544 |
|
|
|
546 |
import sys
|
547 |
# self._model._sample = types.MethodType(NewGenerationMixin.sample_stream, self._model)
|
548 |
self._model.sample = types.MethodType(NewGenerationMixin.sample_stream, self._model)
|
549 |
+
|
550 |
+
self.maybe_raise_safety(prompt)
|
551 |
+
|
552 |
with torch.no_grad():
|
553 |
inputs = self.tokenizer(prompt, return_tensors='pt')
|
554 |
num_tokens = inputs.input_ids.size(1)
|
|
|
565 |
|
566 |
out_tokens = []
|
567 |
response = None
|
568 |
+
for index, token in enumerate(generator):
|
569 |
out_tokens.extend(token.tolist())
|
570 |
response = self.tokenizer.decode(out_tokens)
|
571 |
if "<|im_start|>assistant\n" in response:
|
|
|
573 |
num_tokens += 1
|
574 |
# print(f"{response}", end='\r')
|
575 |
# sys.stdout.flush()
|
576 |
+
self.maybe_raise_safety(response, gen_index=index)
|
577 |
yield response, num_tokens
|
578 |
+
|
579 |
+
del generator
|
580 |
if response is not None:
|
581 |
if "<|im_start|>assistant\n" in response:
|
582 |
response = response.split("<|im_start|>assistant\n")[-1]
|
583 |
+
|
584 |
+
self.maybe_raise_safety(response)
|
585 |
full_text = prompt + response
|
586 |
num_tokens = len(self.tokenizer.encode(full_text))
|
587 |
yield response, num_tokens
|