Spaces:
Running
on
Zero
Running
on
Zero
Create performance_plot.py
Browse files- performance_plot.py +253 -0
performance_plot.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
import json
|
5 |
+
import pandas as pd
|
6 |
+
import plotly.express as px
|
7 |
+
import plotly.graph_objects as go
|
8 |
+
from datasets import load_dataset
|
9 |
+
from plotly.subplots import make_subplots
|
10 |
+
|
11 |
+
|
12 |
+
CATEGORIES = ["task-solving", "math-reasoning", "general-instruction", "natural-question", "safety"]
|
13 |
+
LANGS = ['en', 'vi', 'th', 'id', 'km', 'lo', 'ms', 'my', 'tl']
|
14 |
+
|
15 |
+
FORCE_DOWNLOAD = bool(int(os.environ.get("FORCE_DOWNLOAD", "0")))
|
16 |
+
HF_TOKEN = str(os.environ.get("HF_TOKEN", ""))
|
17 |
+
DATA_SET_REPO_PATH = str(os.environ.get("DATA_SET_REPO_PATH", ""))
|
18 |
+
PERFORMANCE_FILENAME = str(os.environ.get("PERFORMANCE_FILENAME", "gpt4_single_json.csv"))
|
19 |
+
|
20 |
+
|
21 |
+
rename_map = {
|
22 |
+
"seallm13b10L6k_a_5a1R1_seaall_sft4x_1_5a1_r2_0_dpo_8_40000s": "SeaLLM-13b",
|
23 |
+
# "seallm13b10L4k_a_sft4xdpo_5a": "SeaLLM-13b-10L",
|
24 |
+
"polylm": "PolyLM-13b",
|
25 |
+
"qwen": "Qwen-14b",
|
26 |
+
"gpt-3.5-turbo": "GPT-3.5-turbo",
|
27 |
+
"gpt-4-1106-preview": "GPT-4-turbo",
|
28 |
+
}
|
29 |
+
CATEGORIES = [ "task-solving", "math-reasoning", "general-instruction", "natural-question", "safety", ]
|
30 |
+
|
31 |
+
CATEGORIES_NAMES = {
|
32 |
+
"task-solving": 'Task-solving',
|
33 |
+
"math-reasoning": 'Math',
|
34 |
+
"general-instruction": 'General-instruction',
|
35 |
+
"natural-question": 'NaturalQA',
|
36 |
+
"safety": 'Safety',
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
# LANGS = ['en', 'vi', 'th', 'id', 'km', 'lo', 'ms', 'my', 'tl']
|
41 |
+
LANGS = ['en', 'vi', 'id', 'ms', 'tl', 'th', 'km', 'lo', 'my']
|
42 |
+
LANG_NAMES = {
|
43 |
+
'en': 'eng',
|
44 |
+
'vi': 'vie',
|
45 |
+
'th': 'tha',
|
46 |
+
'id': 'ind',
|
47 |
+
'km': 'khm',
|
48 |
+
'lo': 'lao',
|
49 |
+
'ms': 'msa',
|
50 |
+
'my': 'mya',
|
51 |
+
'tl': 'tgl',
|
52 |
+
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
MODEL_DFRAME = None
|
58 |
+
|
59 |
+
def get_model_df():
|
60 |
+
# global MODEL_DFRAME
|
61 |
+
# if isinstance(MODEL_DFRAME, pd.DataFrame):
|
62 |
+
# print(f'Load cache data frame')
|
63 |
+
# return MODEL_DFRAME
|
64 |
+
from huggingface_hub import hf_hub_download
|
65 |
+
assert DATA_SET_REPO_PATH != ''
|
66 |
+
assert HF_TOKEN != ''
|
67 |
+
repo_id = DATA_SET_REPO_PATH
|
68 |
+
filename = PERFORMANCE_FILENAME
|
69 |
+
|
70 |
+
# data_path = f"{DATA_SET_REPO_PATH}/{PERFORMANCE_FILENAME}"
|
71 |
+
file_path = hf_hub_download(
|
72 |
+
repo_id=repo_id,
|
73 |
+
filename=filename,
|
74 |
+
force_download=FORCE_DOWNLOAD,
|
75 |
+
local_dir='./hf_cache',
|
76 |
+
repo_type="dataset",
|
77 |
+
token=HF_TOKEN
|
78 |
+
)
|
79 |
+
print(f'Downloaded file at {file_path} from {DATA_SET_REPO_PATH} / {PERFORMANCE_FILENAME}')
|
80 |
+
df = pd.read_csv(file_path)
|
81 |
+
return df
|
82 |
+
|
83 |
+
|
84 |
+
def aggregate_df(df, model_dict, category_name, categories):
|
85 |
+
scores_all = []
|
86 |
+
all_models = df["model"].unique()
|
87 |
+
for model in all_models:
|
88 |
+
for i, cat in enumerate(categories):
|
89 |
+
# filter category/model, and score format error (<1% case)
|
90 |
+
res = df[(df[category_name]==cat) & (df["model"]==model) & (df["score"] >= 0)]
|
91 |
+
score = res["score"].mean()
|
92 |
+
cat_name = cat
|
93 |
+
scores_all.append({"model": model, category_name: cat_name, "score": score})
|
94 |
+
|
95 |
+
target_models = list(model_dict.keys())
|
96 |
+
scores_target = [scores_all[i] for i in range(len(scores_all)) if scores_all[i]["model"] in target_models]
|
97 |
+
scores_target = sorted(scores_target, key=lambda x: target_models.index(x["model"]), reverse=True)
|
98 |
+
|
99 |
+
df_score = pd.DataFrame(scores_target)
|
100 |
+
df_score = df_score[df_score["model"].isin(target_models)]
|
101 |
+
|
102 |
+
rename_map = model_dict
|
103 |
+
|
104 |
+
for k, v in rename_map.items():
|
105 |
+
df_score.replace(k, v, inplace=True)
|
106 |
+
return df_score
|
107 |
+
|
108 |
+
|
109 |
+
def polar_subplot(fig, dframe, model_names, category_label, category_names, row, col, showlegend=True):
|
110 |
+
|
111 |
+
# cat category
|
112 |
+
colors = px.colors.qualitative.Plotly
|
113 |
+
for i, (model, model_name) in enumerate(model_names):
|
114 |
+
cat_list = dframe[dframe['model'] == model_name][category_label].tolist()
|
115 |
+
score_list = dframe[dframe['model'] == model_name]['score'].tolist()
|
116 |
+
cat_list += [cat_list[0]]
|
117 |
+
cat_list = [category_names[x] for x in cat_list]
|
118 |
+
score_list += [score_list[0]]
|
119 |
+
polar = go.Scatterpolar(
|
120 |
+
name = model_name,
|
121 |
+
r = score_list,
|
122 |
+
theta = cat_list,
|
123 |
+
legendgroup=f'{i}',
|
124 |
+
marker=dict(color=colors[i]),
|
125 |
+
hovertemplate="""Score: %{r:.2f}""",
|
126 |
+
showlegend=showlegend,
|
127 |
+
)
|
128 |
+
fig.add_trace(polar, row, col)
|
129 |
+
|
130 |
+
|
131 |
+
def plot_agg_fn():
|
132 |
+
df = get_model_df()
|
133 |
+
|
134 |
+
all_models = df["model"].unique()
|
135 |
+
model_names = list(rename_map.items())
|
136 |
+
colors = px.colors.qualitative.Plotly
|
137 |
+
|
138 |
+
cat_df = aggregate_df(df, rename_map, "category", CATEGORIES, )
|
139 |
+
lang_df = aggregate_df(df, rename_map, "lang", LANGS, )
|
140 |
+
|
141 |
+
fig = make_subplots(
|
142 |
+
rows=1, cols=2,
|
143 |
+
specs=[[{'type': 'polar'}]*2],
|
144 |
+
subplot_titles=("By Category", "By Language"),
|
145 |
+
)
|
146 |
+
fig.layout.annotations[0].y = 1.05
|
147 |
+
fig.layout.annotations[1].y = 1.05
|
148 |
+
|
149 |
+
# cat category
|
150 |
+
for i, (model, model_name) in enumerate(model_names):
|
151 |
+
cat_list = cat_df[cat_df['model'] == model_name]['category'].tolist()
|
152 |
+
score_list = cat_df[cat_df['model'] == model_name]['score'].tolist()
|
153 |
+
cat_list += [cat_list[0]]
|
154 |
+
cat_list = [CATEGORIES_NAMES[x] for x in cat_list]
|
155 |
+
score_list += [score_list[0]]
|
156 |
+
polar = go.Scatterpolar(
|
157 |
+
name = model_name,
|
158 |
+
r = score_list,
|
159 |
+
theta = cat_list,
|
160 |
+
legendgroup=f'{i}',
|
161 |
+
marker=dict(color=colors[i]),
|
162 |
+
hovertemplate="""Score: %{r:.2f}""",
|
163 |
+
)
|
164 |
+
fig.add_trace(polar, 1, 1)
|
165 |
+
|
166 |
+
# cat langs
|
167 |
+
for i, (model, model_name) in enumerate(model_names):
|
168 |
+
cat_list = lang_df[lang_df['model'] == model_name]['lang'].tolist()
|
169 |
+
score_list = lang_df[lang_df['model'] == model_name]['score'].tolist()
|
170 |
+
cat_list += [cat_list[0]]
|
171 |
+
score_list += [score_list[0]]
|
172 |
+
cat_list = [LANG_NAMES[x] for x in cat_list]
|
173 |
+
polar = go.Scatterpolar(
|
174 |
+
name = model_name,
|
175 |
+
r = score_list,
|
176 |
+
theta = cat_list,
|
177 |
+
legendgroup=f'{i}',
|
178 |
+
marker=dict(color=colors[i]),
|
179 |
+
hovertemplate="""Score: %{r:.2f}""",
|
180 |
+
showlegend=False,
|
181 |
+
)
|
182 |
+
fig.add_trace(polar, 1, 2)
|
183 |
+
|
184 |
+
|
185 |
+
polar_config = dict(
|
186 |
+
angularaxis = dict(
|
187 |
+
rotation=90, # start position of angular axis
|
188 |
+
),
|
189 |
+
radialaxis = dict(
|
190 |
+
range=[0, 10],
|
191 |
+
),
|
192 |
+
)
|
193 |
+
|
194 |
+
fig.update_layout(
|
195 |
+
polar = polar_config,
|
196 |
+
polar2 = polar_config,
|
197 |
+
title='Sea-Bench (rated by GPT-4)',
|
198 |
+
)
|
199 |
+
return fig
|
200 |
+
|
201 |
+
|
202 |
+
def plot_by_lang_fn():
|
203 |
+
df = get_model_df()
|
204 |
+
model_names = list(rename_map.items())
|
205 |
+
|
206 |
+
fig = make_subplots(
|
207 |
+
rows=3, cols=3,
|
208 |
+
specs=[[{'type': 'polar'}]*3] * 3,
|
209 |
+
subplot_titles=list(LANG_NAMES.values()),
|
210 |
+
# vertical_spacing=1
|
211 |
+
)
|
212 |
+
# print(fig.layout.annotations)
|
213 |
+
for ano in fig.layout.annotations:
|
214 |
+
ano.y = ano.y + 0.02
|
215 |
+
has_safety = ['vi', 'id', 'th']
|
216 |
+
|
217 |
+
for lang_id, lang in enumerate(LANGS):
|
218 |
+
cat_names = CATEGORIES if lang in has_safety else [x for x in CATEGORIES if x != 'safety']
|
219 |
+
cat_lang_df = aggregate_df(df[df['lang'] == lang], rename_map, "category", cat_names, )
|
220 |
+
row = lang_id // 3 + 1
|
221 |
+
col = lang_id % 3 + 1
|
222 |
+
polar_subplot(fig, cat_lang_df, model_names, 'category', CATEGORIES_NAMES, row, col, showlegend=lang_id == 0)
|
223 |
+
|
224 |
+
polar_config = dict(
|
225 |
+
angularaxis = dict(
|
226 |
+
rotation=90, # start position of angular axis
|
227 |
+
),
|
228 |
+
radialaxis = dict(
|
229 |
+
range=[0, 10],
|
230 |
+
),
|
231 |
+
)
|
232 |
+
layer_kwargs = {f"polar{i}": polar_config for i in range(1, 10)}
|
233 |
+
fig.update_layout(
|
234 |
+
title='Sea-Bench - By language (rated by GPT-4)',
|
235 |
+
height=1000,
|
236 |
+
# width=1200,
|
237 |
+
**layer_kwargs
|
238 |
+
)
|
239 |
+
return fig
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
def attach_plot_to_demo(demo):
|
244 |
+
with gr.Accordion("Psst... wanna see some performance benchmarks?", open=False):
|
245 |
+
gr_plot_agg = gr.Plot(label="Aggregated")
|
246 |
+
gr_plot_bylang = gr.Plot(label='By language')
|
247 |
+
|
248 |
+
# def callback():
|
249 |
+
demo.load(plot_agg_fn, [], gr_plot_agg)
|
250 |
+
demo.load(plot_by_lang_fn, [], gr_plot_bylang)
|
251 |
+
# return callback
|
252 |
+
|
253 |
+
|