import spaces import os import numpy as np import argparse import torch import gradio as gr from typing import Any, Iterator from typing import Iterator, List, Optional, Tuple import filelock import glob import json import time from gradio.routes import Request from gradio.utils import SyncToAsyncIterator, async_iteration from gradio.helpers import special_args import anyio from typing import AsyncGenerator, Callable, Literal, Union, cast from gradio_client.documentation import document, set_documentation_group from typing import List, Optional, Union, Dict, Tuple from tqdm.auto import tqdm from huggingface_hub import snapshot_download import types from gradio.components import Button from gradio.events import Dependency, EventListenerMethod from .base_engine import BaseEngine # ! Remember to use static cache from transformers import ( GenerationConfig, GenerationMixin, LogitsProcessorList, StoppingCriteriaList, DisjunctiveConstraint, BeamSearchScorer, PhrasalConstraint, ConstrainedBeamSearchScorer, PreTrainedModel, ) import numpy as np import random import warnings import inspect from transformers.generation.utils import GenerateOutput, SampleOutput, logger import torch from typing import Callable, List, Optional, Union from torch import nn import torch.distributed as dist import copy from ..configs import ( MODEL_PATH, DTYPE, DEVICE, ) def setup_seed(seed): if seed == -1: return torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True class NewGenerationMixin(GenerationMixin): """ Allow generator sampling """ # ! Copy from transformers.generation.utils -> GenerationMixin # Change sample function to sample_stream @torch.no_grad() def sample_stream( self, input_ids: torch.LongTensor, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, logits_warper: Optional[LogitsProcessorList] = None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[Union[int, List[int]]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_scores: Optional[bool] = None, output_logits: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, synced_gpus: bool = False, streamer: Optional["BaseStreamer"] = None, **model_kwargs, ): r""" Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. In most cases, you do not need to call [`~generation.GenerationMixin.sample`] directly. Use generate() instead. For an overview of generation strategies and code examples, check the [following guide](../generation_strategies). Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. logits_processor (`LogitsProcessorList`, *optional*): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`, *optional*): An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. logits_warper (`LogitsProcessorList`, *optional*): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. max_length (`int`, *optional*, defaults to 20): **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated tokens. The maximum length of the sequence to be generated. pad_token_id (`int`, *optional*): The id of the *padding* token. eos_token_id (`Union[int, List[int]]`, *optional*): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more details. output_hidden_states (`bool`, *optional*, defaults to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more details. output_scores (`bool`, *optional*, defaults to `False`): Whether or not to return the prediction scores. See `scores` under returned tensors for more details. output_logits (`bool`, *optional*, defaults to `False`): Whether or not to return the raw prediction logit scores. See `logits` under returned tensors for more details. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. model_kwargs: Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. Examples: ```python >>> from transformers import ( ... AutoTokenizer, ... AutoModelForCausalLM, ... LogitsProcessorList, ... MinLengthLogitsProcessor, ... TopKLogitsWarper, ... TemperatureLogitsWarper, ... StoppingCriteriaList, ... MaxLengthCriteria, ... ) >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2") >>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token >>> model.config.pad_token_id = model.config.eos_token_id >>> model.generation_config.pad_token_id = model.config.eos_token_id >>> input_prompt = "Today is a beautiful day, and" >>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids >>> # instantiate logits processors >>> logits_processor = LogitsProcessorList( ... [ ... MinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id), ... ] ... ) >>> # instantiate logits processors >>> logits_warper = LogitsProcessorList( ... [ ... TopKLogitsWarper(50), ... TemperatureLogitsWarper(0.7), ... ] ... ) >>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)]) >>> torch.manual_seed(0) # doctest: +IGNORE_RESULT >>> outputs = model.sample( ... input_ids, ... logits_processor=logits_processor, ... logits_warper=logits_warper, ... stopping_criteria=stopping_criteria, ... ) >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) ['Today is a beautiful day, and we must do everything possible to make it a day of celebration.'] ```""" # init values from transformers.generation.utils import ( validate_stopping_criteria, GenerateEncoderDecoderOutput, GenerateDecoderOnlyOutput ) logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() if max_length is not None: warnings.warn( "`max_length` is deprecated in this function, use" " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.", UserWarning, ) stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length) logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList() pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None output_scores = output_scores if output_scores is not None else self.generation_config.output_scores output_logits = output_logits if output_logits is not None else self.generation_config.output_logits output_attentions = ( output_attentions if output_attentions is not None else self.generation_config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states ) return_dict_in_generate = ( return_dict_in_generate if return_dict_in_generate is not None else self.generation_config.return_dict_in_generate ) # init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # if model is an encoder-decoder, retrieve encoder attention weights and hidden states if return_dict_in_generate and self.config.is_encoder_decoder: encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) # keep track of which sequences are already finished unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device) this_peer_finished = False # used by synced_gpus only # auto-regressive generation while True: if synced_gpus: # Under synced_gpus the `forward` call must continue until all gpus complete their sequence. # The following logic allows an early break if all peers finished generating their sequence this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device) # send 0.0 if we finished, 1.0 otherwise dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM) # did all peers finish? the reduced sum will be 0.0 then if this_peer_finished_flag.item() == 0.0: break # prepare model inputs model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) # forward pass to get next token outputs = self( **model_inputs, return_dict=True, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) if synced_gpus and this_peer_finished: continue # don't waste resources running the code we don't need next_token_logits = outputs.logits[:, -1, :] # pre-process distribution next_token_scores = logits_processor(input_ids, next_token_logits) next_token_scores = logits_warper(input_ids, next_token_scores) # Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_scores: scores += (next_token_scores,) if output_logits: raw_logits += (next_token_logits,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) ) if self.config.is_encoder_decoder: cross_attentions += (outputs.cross_attentions,) if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,) ) # sample probs = nn.functional.softmax(next_token_scores, dim=-1) next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) # finished sentences should have their next token be a padding token if eos_token_id is not None: if pad_token_id is None: raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.") next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) yield next_tokens.cpu() # update generated ids, model inputs, and length for next step input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) if streamer is not None: streamer.put(next_tokens.cpu()) next_model_inputs = {} if "cache_position" in model_inputs: next_model_inputs['cache_position'] = model_inputs['cache_position'] try: model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, # model_inputs=model_inputs model_inputs=next_model_inputs, ) except Exception as e: # ! some transformers version don't have model_inputs in generation model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, # model_inputs=model_inputs # model_inputs=next_model_inputs, ) # if eos_token was found in one sentence, set sentence to finished if eos_token_id_tensor is not None: unfinished_sequences = unfinished_sequences.mul( next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0) ) # stop when each sentence is finished if unfinished_sequences.max() == 0: this_peer_finished = True # stop if we exceed the maximum length if stopping_criteria(input_ids, scores): this_peer_finished = True if this_peer_finished and not synced_gpus: break if streamer is not None: streamer.end() # if return_dict_in_generate: # if self.config.is_encoder_decoder: # return GenerateEncoderDecoderOutput( # sequences=input_ids, # scores=scores, # logits=raw_logits, # encoder_attentions=encoder_attentions, # encoder_hidden_states=encoder_hidden_states, # decoder_attentions=decoder_attentions, # cross_attentions=cross_attentions, # decoder_hidden_states=decoder_hidden_states, # past_key_values=model_kwargs.get("past_key_values"), # ) # else: # return GenerateDecoderOnlyOutput( # sequences=input_ids, # scores=scores, # logits=raw_logits, # attentions=decoder_attentions, # hidden_states=decoder_hidden_states, # past_key_values=model_kwargs.get("past_key_values"), # ) # else: # return input_ids class TransformersEngine(BaseEngine): @property def max_position_embeddings(self) -> int: return self._model.config.max_position_embeddings @property def tokenizer(self): return self._tokenizer def load_model(self): from transformers import AutoTokenizer, AutoModelForCausalLM import sys # caution: path[0] is reserved for script path (or '' in REPL) # sys.path.append(CODE_PATH) self.model_path = model_path = MODEL_PATH self.torch_dtype = torch.bfloat16 if DTYPE == 'bfloat16' else torch.float16 self.device_map = DEVICE print(f'Loading model from {model_path} on {self.device_map} with {self.torch_dtype}') self._tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) assert self._tokenizer.chat_template is not None and self._tokenizer.chat_template != "", f"{self._tokenizer.chat_template=} not found!" self._model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=self.torch_dtype, device_map=self.device_map, trust_remote_code=True).eval() self._model.sample_old = self._model.sample self._model._sample = types.MethodType(NewGenerationMixin.sample_stream, self._model) print(self._model) print(f"{self.max_position_embeddings=}") @spaces.GPU def generate_yield_string(self, prompt, temperature, max_tokens, stop_strings: Optional[Tuple[str]] = None, **kwargs): # ! MUST PUT INSIDE torch.no_grad() otherwise it will overflow OOM with torch.no_grad(): inputs = self.tokenizer(prompt, return_tensors='pt') num_tokens = inputs.input_ids.size(1) inputs = inputs.to(self._model.device) generator = self._model.generate( **inputs, do_sample=True, temperature=temperature, max_new_tokens=max_tokens, pad_token_id=self.tokenizer.pad_token_id, ) out_tokens = [] response = None for token in generator: out_tokens.append(token.item()) response = self.tokenizer.decode(out_tokens) num_tokens += 1 # print(f"{num_tokens=}", end='\r') # sys.stdout.flush() yield response, num_tokens if response is not None: full_text = prompt + response num_tokens = len(self.tokenizer.encode(full_text)) yield response, num_tokens