import os
from gradio.themes import ThemeClass as Theme
import numpy as np
import argparse
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json
import time
from gradio.routes import Request
from gradio.utils import SyncToAsyncIterator, async_iteration
from gradio.helpers import special_args
import anyio
from typing import AsyncGenerator, Callable, Literal, Union, cast, Generator
from gradio_client.documentation import document, set_documentation_group
from gradio.components import Button, Component
from gradio.events import Dependency, EventListenerMethod
from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download
from gradio.themes import ThemeClass as Theme
from .base_demo import register_demo, get_demo_class, BaseDemo
import inspect
from typing import AsyncGenerator, Callable, Literal, Union, cast
import anyio
from gradio_client import utils as client_utils
from gradio_client.documentation import document
from gradio.blocks import Blocks
from gradio.components import (
Button,
Chatbot,
Component,
Markdown,
State,
Textbox,
get_component_instance,
)
from gradio.events import Dependency, on
from gradio.helpers import create_examples as Examples # noqa: N812
from gradio.helpers import special_args
from gradio.layouts import Accordion, Group, Row
from gradio.routes import Request
from gradio.themes import ThemeClass as Theme
from gradio.utils import SyncToAsyncIterator, async_iteration
from ..globals import MODEL_ENGINE, RAG_CURRENT_FILE, RAG_EMBED, load_embeddings, get_rag_embeddings
from .chat_interface import (
SYSTEM_PROMPT,
MODEL_NAME,
MAX_TOKENS,
TEMPERATURE,
CHAT_EXAMPLES,
gradio_history_to_openai_conversations,
gradio_history_to_conversation_prompt,
DATETIME_FORMAT,
get_datetime_string,
format_conversation,
chat_response_stream_multiturn_engine,
ChatInterfaceDemo,
CustomizedChatInterface,
)
from ..configs import (
CHUNK_SIZE,
CHUNK_OVERLAP,
RAG_EMBED_MODEL_NAME,
CHATBOT_HEIGHT,
USE_PANEL,
)
RAG_CURRENT_VECTORSTORE = None
def load_document_split_vectorstore(file_path):
global RAG_CURRENT_FILE, RAG_EMBED, RAG_CURRENT_VECTORSTORE
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import Chroma, FAISS
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
if file_path.endswith('.pdf'):
loader = PyPDFLoader(file_path)
elif file_path.endswith('.docx'):
loader = Docx2txtLoader(file_path)
elif file_path.endswith('.txt'):
loader = TextLoader(file_path)
splits = loader.load_and_split(splitter)
RAG_CURRENT_VECTORSTORE = FAISS.from_texts(texts=[s.page_content for s in splits], embedding=get_rag_embeddings())
return RAG_CURRENT_VECTORSTORE
def docs_to_context_content(docs: List[Any]):
content = "\n".join([d.page_content for d in docs])
return content
DOC_TEMPLATE = """###
{content}
###
"""
DOC_INSTRUCTION = """Answer the following query exclusively based on the information provided in the document above. \
If the information is not found, please say so instead of making up facts! Remember to answer the question in the same language as the user query!
"""
def docs_to_rag_context(docs: List[Any], doc_instruction=None):
doc_instruction = doc_instruction or DOC_INSTRUCTION
content = docs_to_context_content(docs)
context = doc_instruction.strip() + "\n" + DOC_TEMPLATE.format(content=content)
return context
def maybe_get_doc_context(message, file_input, rag_num_docs: Optional[int] = 3):
doc_context = None
if file_input is not None:
if file_input == RAG_CURRENT_FILE:
# reuse
vectorstore = RAG_CURRENT_VECTORSTORE
print(f'Reuse vectorstore: {file_input}')
else:
vectorstore = load_document_split_vectorstore(file_input)
print(f'New vectorstore: {RAG_CURRENT_FILE} {file_input}')
RAG_CURRENT_FILE = file_input
docs = vectorstore.similarity_search(message, k=rag_num_docs)
doc_context = docs_to_rag_context(docs)
return doc_context
def chat_response_stream_multiturn_doc_engine(
message: str,
history: List[Tuple[str, str]],
file_input: Optional[str] = None,
temperature: float = 0.7,
max_tokens: int = 1024,
system_prompt: Optional[str] = SYSTEM_PROMPT,
rag_num_docs: Optional[int] = 3,
doc_instruction: Optional[str] = DOC_INSTRUCTION,
# profile: Optional[gr.OAuthProfile] = None,
):
global MODEL_ENGINE, RAG_CURRENT_FILE, RAG_EMBED, RAG_CURRENT_VECTORSTORE
if len(message) == 0:
raise gr.Error("The message cannot be empty!")
rag_num_docs = int(rag_num_docs)
doc_instruction = doc_instruction or DOC_INSTRUCTION
doc_context = None
if file_input is not None:
if file_input == RAG_CURRENT_FILE:
# reuse
vectorstore = RAG_CURRENT_VECTORSTORE
print(f'Reuse vectorstore: {file_input}')
else:
vectorstore = load_document_split_vectorstore(file_input)
print(f'New vectorstore: {RAG_CURRENT_FILE} {file_input}')
RAG_CURRENT_FILE = file_input
docs = vectorstore.similarity_search(message, k=rag_num_docs)
# doc_context = docs_to_rag_context(docs)
rag_content = docs_to_context_content(docs)
doc_context = doc_instruction.strip() + "\n" + DOC_TEMPLATE.format(content=rag_content)
if doc_context is not None:
message = f"{doc_context}\n\n{message}"
for response, num_tokens in chat_response_stream_multiturn_engine(
message, history, temperature, max_tokens, system_prompt
):
# ! yield another content which is doc_context
yield response, num_tokens, doc_context
class RagChatInterface(CustomizedChatInterface):
def __init__(
self,
fn: Callable[..., Any],
*,
chatbot: gr.Chatbot | None = None,
textbox: gr.Textbox | None = None,
additional_inputs: str | Component | list[str | Component] | None = None,
additional_inputs_accordion_name: str | None = None,
additional_inputs_accordion: str | gr.Accordion | None = None,
render_additional_inputs_fn: Callable | None = None,
examples: list[str] | None = None,
cache_examples: bool | None = None,
title: str | None = None,
description: str | None = None,
theme: Theme | str | None = None,
css: str | None = None,
js: str | None = None,
head: str | None = None,
analytics_enabled: bool | None = None,
submit_btn: str | Button | None = "Submit",
stop_btn: str | Button | None = "Stop",
retry_btn: str | Button | None = "đ Retry",
undo_btn: str | Button | None = "âŠī¸ Undo",
clear_btn: str | Button | None = "đī¸ Clear",
autofocus: bool = True,
concurrency_limit: int | Literal['default'] | None = "default",
fill_height: bool = True
):
try:
super(gr.ChatInterface, self).__init__(
analytics_enabled=analytics_enabled,
mode="chat_interface",
css=css,
title=title or "Gradio",
theme=theme,
js=js,
head=head,
fill_height=fill_height,
)
except Exception as e:
# Handling some old gradio version with out fill_height
super(gr.ChatInterface, self).__init__(
analytics_enabled=analytics_enabled,
mode="chat_interface",
css=css,
title=title or "Gradio",
theme=theme,
js=js,
head=head,
# fill_height=fill_height,
)
self.concurrency_limit = concurrency_limit
self.fn = fn
self.render_additional_inputs_fn = render_additional_inputs_fn
self.is_async = inspect.iscoroutinefunction(
self.fn
) or inspect.isasyncgenfunction(self.fn)
self.is_generator = inspect.isgeneratorfunction(
self.fn
) or inspect.isasyncgenfunction(self.fn)
self.examples = examples
if self.space_id and cache_examples is None:
self.cache_examples = True
else:
self.cache_examples = cache_examples or False
self.buttons: list[Button | None] = []
if additional_inputs:
if not isinstance(additional_inputs, list):
additional_inputs = [additional_inputs]
self.additional_inputs = [
get_component_instance(i)
for i in additional_inputs # type: ignore
]
else:
self.additional_inputs = []
if additional_inputs_accordion_name is not None:
print(
"The `additional_inputs_accordion_name` parameter is deprecated and will be removed in a future version of Gradio. Use the `additional_inputs_accordion` parameter instead."
)
self.additional_inputs_accordion_params = {
"label": additional_inputs_accordion_name
}
if additional_inputs_accordion is None:
self.additional_inputs_accordion_params = {
"label": "Additional Inputs",
"open": False,
}
elif isinstance(additional_inputs_accordion, str):
self.additional_inputs_accordion_params = {
"label": additional_inputs_accordion
}
elif isinstance(additional_inputs_accordion, Accordion):
self.additional_inputs_accordion_params = (
additional_inputs_accordion.recover_kwargs(
additional_inputs_accordion.get_config()
)
)
else:
raise ValueError(
f"The `additional_inputs_accordion` parameter must be a string or gr.Accordion, not {type(additional_inputs_accordion)}"
)
with self:
if title:
Markdown(
f"
{self.title}
"
)
if description:
Markdown(description)
with Row():
self.rag_content = gr.Textbox(
scale=1,
lines=4,
max_lines=16,
label='Retrieved RAG context',
placeholder="Rag context and instrution will show up here",
interactive=False
)
if chatbot:
self.chatbot = chatbot.render()
else:
self.chatbot = Chatbot(
label="Chatbot", scale=3, height=200 if fill_height else None
)
with Row():
for btn in [retry_btn, undo_btn, clear_btn]:
if btn is not None:
if isinstance(btn, Button):
btn.render()
elif isinstance(btn, str):
btn = Button(btn, variant="secondary", size="sm")
else:
raise ValueError(
f"All the _btn parameters must be a gr.Button, string, or None, not {type(btn)}"
)
self.buttons.append(btn) # type: ignore
with Group():
with Row():
if textbox:
textbox.container = False
textbox.show_label = False
textbox_ = textbox.render()
assert isinstance(textbox_, Textbox)
self.textbox = textbox_
else:
self.textbox = Textbox(
container=False,
show_label=False,
label="Message",
placeholder="Type a message...",
scale=7,
autofocus=autofocus,
)
if submit_btn is not None:
if isinstance(submit_btn, Button):
submit_btn.render()
elif isinstance(submit_btn, str):
submit_btn = Button(
submit_btn,
variant="primary",
scale=2,
min_width=150,
)
else:
raise ValueError(
f"The submit_btn parameter must be a gr.Button, string, or None, not {type(submit_btn)}"
)
if stop_btn is not None:
if isinstance(stop_btn, Button):
stop_btn.visible = False
stop_btn.render()
elif isinstance(stop_btn, str):
stop_btn = Button(
stop_btn,
variant="stop",
visible=False,
scale=2,
min_width=150,
)
else:
raise ValueError(
f"The stop_btn parameter must be a gr.Button, string, or None, not {type(stop_btn)}"
)
self.num_tokens = Textbox(
container=False,
label="num_tokens",
placeholder="0 tokens",
scale=1,
interactive=False,
# autofocus=autofocus,
min_width=10
)
self.buttons.extend([submit_btn, stop_btn]) # type: ignore
self.fake_api_btn = Button("Fake API", visible=False)
self.fake_response_textbox = Textbox(label="Response", visible=False)
(
self.retry_btn,
self.undo_btn,
self.clear_btn,
self.submit_btn,
self.stop_btn,
) = self.buttons
if examples:
if self.is_generator:
examples_fn = self._examples_stream_fn
else:
examples_fn = self._examples_fn
self.examples_handler = Examples(
examples=examples,
inputs=[self.textbox] + self.additional_inputs,
outputs=self.chatbot,
fn=examples_fn,
)
any_unrendered_inputs = any(
not inp.is_rendered for inp in self.additional_inputs
)
if self.additional_inputs and any_unrendered_inputs:
with Accordion(**self.additional_inputs_accordion_params): # type: ignore
if self.render_additional_inputs_fn is not None:
self.render_additional_inputs_fn()
else:
for input_component in self.additional_inputs:
if not input_component.is_rendered:
input_component.render()
# self.rag_content = gr.Textbox(
# scale=4,
# lines=16,
# label='Retrieved RAG context',
# placeholder="Rag context and instrution will show up here",
# interactive=False
# )
# The example caching must happen after the input components have rendered
if cache_examples:
client_utils.synchronize_async(self.examples_handler.cache)
self.saved_input = State()
self.chatbot_state = (
State(self.chatbot.value) if self.chatbot.value else State([])
)
self._setup_events()
self._setup_api()
def _setup_events(self) -> None:
from gradio.components import State
has_on = False
try:
from gradio.events import Dependency, EventListenerMethod, on
has_on = True
except ImportError as ie:
has_on = False
submit_fn = self._stream_fn if self.is_generator else self._submit_fn
if not self.is_generator:
raise NotImplementedError(f'should use generator')
if has_on:
# new version
submit_triggers = (
[self.textbox.submit, self.submit_btn.click]
if self.submit_btn
else [self.textbox.submit]
)
submit_event = (
on(
submit_triggers,
self._clear_and_save_textbox,
[self.textbox],
[self.textbox, self.saved_input],
api_name=False,
queue=False,
)
.then(
self._display_input,
[self.saved_input, self.chatbot_state],
[self.chatbot, self.chatbot_state],
api_name=False,
queue=False,
)
.then(
submit_fn,
[self.saved_input, self.chatbot_state] + self.additional_inputs,
[self.chatbot, self.chatbot_state, self.num_tokens, self.rag_content],
api_name=False,
)
)
self._setup_stop_events(submit_triggers, submit_event)
else:
raise ValueError(f'Better install new gradio version than 3.44.0')
if self.retry_btn:
retry_event = (
self.retry_btn.click(
self._delete_prev_fn,
[self.chatbot_state],
[self.chatbot, self.saved_input, self.chatbot_state],
api_name=False,
queue=False,
)
.then(
self._display_input,
[self.saved_input, self.chatbot_state],
[self.chatbot, self.chatbot_state],
api_name=False,
queue=False,
)
.then(
submit_fn,
[self.saved_input, self.chatbot_state] + self.additional_inputs,
[self.chatbot, self.chatbot_state, self.num_tokens, self.rag_content],
api_name=False,
)
)
self._setup_stop_events([self.retry_btn.click], retry_event)
if self.undo_btn:
self.undo_btn.click(
self._delete_prev_fn,
[self.chatbot_state],
[self.chatbot, self.saved_input, self.chatbot_state],
api_name=False,
queue=False,
).then(
lambda x: x,
[self.saved_input],
[self.textbox],
api_name=False,
queue=False,
)
# Reconfigure clear_btn to stop and clear text box
async def _stream_fn(
self,
message: str,
history_with_input,
request: Request,
*args,
) -> AsyncGenerator:
history = history_with_input[:-1]
inputs, _, _ = special_args(
self.fn, inputs=[message, history, *args], request=request
)
if self.is_async:
generator = self.fn(*inputs)
else:
generator = await anyio.to_thread.run_sync(
self.fn, *inputs, limiter=self.limiter
)
generator = SyncToAsyncIterator(generator, self.limiter)
# ! In case of error, yield the previous history & undo any generation before raising error
try:
first_response_pack = await async_iteration(generator)
if isinstance(first_response_pack, (tuple, list)):
first_response, num_tokens, rag_content = first_response_pack
else:
first_response, num_tokens, rag_content = first_response_pack, -1, ""
update = history + [[message, first_response]]
yield update, update, f"{num_tokens} toks", rag_content
except StopIteration:
update = history + [[message, None]]
yield update, update, "NaN toks", ""
except Exception as e:
yield history, history, "NaN toks", ""
raise e
try:
async for response_pack in generator:
if isinstance(response_pack, (tuple, list)):
response, num_tokens, rag_content = response_pack
else:
response, num_tokens, rag_content = response_pack, "NaN toks", ""
update = history + [[message, response]]
yield update, update, f"{num_tokens} toks", rag_content
except Exception as e:
yield history, history, "NaN toks", ""
raise e
@register_demo
class RagChatInterfaceDemo(ChatInterfaceDemo):
@property
def examples(self):
return [
["Explain how attention works.", "assets/attention_all_you_need.pdf"],
["Explain why the sky is blue.", None],
]
@property
def tab_name(self):
return "RAG Chat"
def create_demo(
self,
title: str | None = None,
description: str | None = None,
**kwargs
) -> gr.Blocks:
load_embeddings()
global RAG_EMBED
# assert RAG_EMBED is not None
print(F'{RAG_EMBED=}')
system_prompt = kwargs.get("system_prompt", SYSTEM_PROMPT)
max_tokens = kwargs.get("max_tokens", MAX_TOKENS)
temperature = kwargs.get("temperature", TEMPERATURE)
model_name = kwargs.get("model_name", MODEL_NAME)
rag_num_docs = kwargs.get("rag_num_docs", 3)
from ..configs import RAG_EMBED_MODEL_NAME
description = (
description or
f"""Upload a long document to ask question with RAG. Check the RAG retrieved text segment on the left.
Control `RAG instruction` below to fit your language. Embedding model {RAG_EMBED_MODEL_NAME}."""
)
additional_inputs = [
gr.File(label='Upload Document', file_count='single', file_types=['pdf', 'docx', 'txt']),
gr.Number(value=temperature, label='Temperature', min_width=20),
gr.Number(value=max_tokens, label='Max tokens', min_width=20),
gr.Textbox(value=system_prompt, label='System prompt', lines=2),
gr.Number(value=rag_num_docs, label='RAG Top-K', min_width=20),
gr.Textbox(value=DOC_INSTRUCTION, label='RAG instruction'),
]
def render_additional_inputs_fn():
additional_inputs[0].render()
with Row():
additional_inputs[1].render()
additional_inputs[2].render()
additional_inputs[4].render()
additional_inputs[3].render()
additional_inputs[5].render()
demo_chat = RagChatInterface(
chat_response_stream_multiturn_doc_engine,
chatbot=gr.Chatbot(
label=model_name,
bubble_full_width=False,
latex_delimiters=[
{ "left": "$", "right": "$", "display": False},
{ "left": "$$", "right": "$$", "display": True},
],
show_copy_button=True,
scale=3,
layout="panel" if USE_PANEL else "bubble",
height=CHATBOT_HEIGHT,
),
textbox=gr.Textbox(placeholder='Type message', lines=1, max_lines=128, min_width=200, scale=8),
submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
# ! consider preventing the stop button
# stop_btn=None,
title=title,
description=description,
additional_inputs=additional_inputs,
render_additional_inputs_fn=render_additional_inputs_fn,
additional_inputs_accordion=gr.Accordion("Additional Inputs", open=True),
examples=self.examples,
cache_examples=False,
)
return demo_chat