SengTak commited on
Commit
cc75dc9
·
1 Parent(s): 0f8e55a

Update space

Browse files
Files changed (3) hide show
  1. README.md +5 -1
  2. app.py +36 -57
  3. requirements.txt +9 -1
README.md CHANGED
@@ -11,4 +11,8 @@ license: apache-2.0
11
  short_description: Simple demo on HarmfulPromptClassifier based on LEC paper
12
  ---
13
 
14
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
 
 
 
 
11
  short_description: Simple demo on HarmfulPromptClassifier based on LEC paper
12
  ---
13
 
14
+ An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
15
+
16
+ ---
17
+ ### When working locally to update
18
+ git commit -am 'Update space' && git push
app.py CHANGED
@@ -1,64 +1,43 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
 
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import joblib
3
+ import torch
4
+ from l3prune.l3prune import LLMEncoder
5
+ #load the model
6
+ best_clf = joblib.load("./saved/classifier_llama32.joblib")
7
+
8
+
9
+ encoder = LLMEncoder.from_pretrained(
10
+ "./saved/pruned_encoder_llama32",
11
+ device_map="cpu",
12
+ torch_dtype=torch.bfloat16,
13
+ #torch_dtype=torch,
14
+ #cache_dir=cache_dir
15
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
 
 
17
 
18
 
19
+ def classify_prompt(prompt):
20
+ #response = client.text_classification(prompt)
21
+ #label = response[0]['label']
22
+ #score = response[0]['score']
23
+
24
+ #if label == 'hate':
25
+ # result = f"Harmful (Confidence: {score:.2%})"
26
+ #else:
27
+ # result = f"Benign (Confidence: {score:.2%})"
28
+
29
+ X = encoder.encode([prompt])
30
+ result = best_clf.predict(X)[0]
31
+
32
+ return "Harmful" if result else "Benign"
33
+
34
+ demo = gr.Interface(
35
+ fn=classify_prompt,
36
+ inputs=gr.Textbox(lines=3, placeholder="Enter a prompt to classify..."),
37
+ outputs=gr.Textbox(label="Classification Result"),
38
+ title="Harmful Prompt Classifier",
39
+ description="This app classifies whether a given prompt is potentially harmful or benign.",
40
  )
41
 
 
42
  if __name__ == "__main__":
43
+ demo.launch()
requirements.txt CHANGED
@@ -1 +1,9 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
 
 
 
 
1
+ huggingface_hub==0.25.2
2
+ numpy
3
+ tqdm
4
+ torch
5
+ peft
6
+ transformers>=4.39.1
7
+ datasets
8
+ evaluate
9
+ scikit-learn