Spaces:
Sleeping
Sleeping
Update space
Browse files- README.md +5 -1
- app.py +36 -57
- requirements.txt +9 -1
README.md
CHANGED
@@ -11,4 +11,8 @@ license: apache-2.0
|
|
11 |
short_description: Simple demo on HarmfulPromptClassifier based on LEC paper
|
12 |
---
|
13 |
|
14 |
-
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
|
|
|
|
|
|
|
11 |
short_description: Simple demo on HarmfulPromptClassifier based on LEC paper
|
12 |
---
|
13 |
|
14 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
15 |
+
|
16 |
+
---
|
17 |
+
### When working locally to update
|
18 |
+
git commit -am 'Update space' && git push
|
app.py
CHANGED
@@ -1,64 +1,43 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import torch
|
4 |
+
from l3prune.l3prune import LLMEncoder
|
5 |
+
#load the model
|
6 |
+
best_clf = joblib.load("./saved/classifier_llama32.joblib")
|
7 |
+
|
8 |
+
|
9 |
+
encoder = LLMEncoder.from_pretrained(
|
10 |
+
"./saved/pruned_encoder_llama32",
|
11 |
+
device_map="cpu",
|
12 |
+
torch_dtype=torch.bfloat16,
|
13 |
+
#torch_dtype=torch,
|
14 |
+
#cache_dir=cache_dir
|
15 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
17 |
|
18 |
|
19 |
+
def classify_prompt(prompt):
|
20 |
+
#response = client.text_classification(prompt)
|
21 |
+
#label = response[0]['label']
|
22 |
+
#score = response[0]['score']
|
23 |
+
|
24 |
+
#if label == 'hate':
|
25 |
+
# result = f"Harmful (Confidence: {score:.2%})"
|
26 |
+
#else:
|
27 |
+
# result = f"Benign (Confidence: {score:.2%})"
|
28 |
+
|
29 |
+
X = encoder.encode([prompt])
|
30 |
+
result = best_clf.predict(X)[0]
|
31 |
+
|
32 |
+
return "Harmful" if result else "Benign"
|
33 |
+
|
34 |
+
demo = gr.Interface(
|
35 |
+
fn=classify_prompt,
|
36 |
+
inputs=gr.Textbox(lines=3, placeholder="Enter a prompt to classify..."),
|
37 |
+
outputs=gr.Textbox(label="Classification Result"),
|
38 |
+
title="Harmful Prompt Classifier",
|
39 |
+
description="This app classifies whether a given prompt is potentially harmful or benign.",
|
40 |
)
|
41 |
|
|
|
42 |
if __name__ == "__main__":
|
43 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,9 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
numpy
|
3 |
+
tqdm
|
4 |
+
torch
|
5 |
+
peft
|
6 |
+
transformers>=4.39.1
|
7 |
+
datasets
|
8 |
+
evaluate
|
9 |
+
scikit-learn
|