duplicate from OCR
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Home.py +17 -0
- README.md +2 -1
- __pycache__/multipage.cpython-37.pyc +0 -0
- app_pages/.DS_Store +0 -0
- app_pages/__pycache__/about.cpython-37.pyc +0 -0
- app_pages/__pycache__/home.cpython-37.pyc +0 -0
- app_pages/__pycache__/ocr_comparator.cpython-37.pyc +0 -0
- app_pages/about.py +37 -0
- app_pages/home.py +19 -0
- app_pages/img_demo_1.jpg +0 -0
- app_pages/img_demo_2.jpg +0 -0
- app_pages/ocr.png +0 -0
- app_pages/ocr_comparator.py +1421 -0
- configs/_base_/default_runtime.py +17 -0
- configs/_base_/det_datasets/ctw1500.py +18 -0
- configs/_base_/det_datasets/icdar2015.py +18 -0
- configs/_base_/det_datasets/icdar2017.py +18 -0
- configs/_base_/det_datasets/synthtext.py +18 -0
- configs/_base_/det_datasets/toy_data.py +41 -0
- configs/_base_/det_models/dbnet_r18_fpnc.py +21 -0
- configs/_base_/det_models/dbnet_r50dcnv2_fpnc.py +23 -0
- configs/_base_/det_models/dbnetpp_r50dcnv2_fpnc.py +28 -0
- configs/_base_/det_models/drrg_r50_fpn_unet.py +21 -0
- configs/_base_/det_models/fcenet_r50_fpn.py +33 -0
- configs/_base_/det_models/fcenet_r50dcnv2_fpn.py +35 -0
- configs/_base_/det_models/ocr_mask_rcnn_r50_fpn_ohem.py +126 -0
- configs/_base_/det_models/ocr_mask_rcnn_r50_fpn_ohem_poly.py +126 -0
- configs/_base_/det_models/panet_r18_fpem_ffm.py +43 -0
- configs/_base_/det_models/panet_r50_fpem_ffm.py +21 -0
- configs/_base_/det_models/psenet_r50_fpnf.py +51 -0
- configs/_base_/det_models/textsnake_r50_fpn_unet.py +22 -0
- configs/_base_/det_pipelines/dbnet_pipeline.py +88 -0
- configs/_base_/det_pipelines/drrg_pipeline.py +60 -0
- configs/_base_/det_pipelines/fcenet_pipeline.py +118 -0
- configs/_base_/det_pipelines/maskrcnn_pipeline.py +57 -0
- configs/_base_/det_pipelines/panet_pipeline.py +156 -0
- configs/_base_/det_pipelines/psenet_pipeline.py +70 -0
- configs/_base_/det_pipelines/textsnake_pipeline.py +65 -0
- configs/_base_/recog_datasets/MJ_train.py +21 -0
- configs/_base_/recog_datasets/ST_MJ_alphanumeric_train.py +31 -0
- configs/_base_/recog_datasets/ST_MJ_train.py +29 -0
- configs/_base_/recog_datasets/ST_SA_MJ_real_train.py +81 -0
- configs/_base_/recog_datasets/ST_SA_MJ_train.py +48 -0
- configs/_base_/recog_datasets/ST_charbox_train.py +23 -0
- configs/_base_/recog_datasets/academic_test.py +57 -0
- configs/_base_/recog_datasets/seg_toy_data.py +34 -0
- configs/_base_/recog_datasets/toy_data.py +54 -0
- configs/_base_/recog_models/abinet.py +70 -0
- configs/_base_/recog_models/crnn.py +12 -0
- configs/_base_/recog_models/crnn_tps.py +18 -0
Home.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from multipage import MultiPage
|
3 |
+
from app_pages import home, about, ocr_comparator
|
4 |
+
|
5 |
+
app = MultiPage()
|
6 |
+
st.set_page_config(
|
7 |
+
page_title='OCR Comparator', layout ="wide",
|
8 |
+
initial_sidebar_state="expanded",
|
9 |
+
)
|
10 |
+
|
11 |
+
# Add all your application here
|
12 |
+
app.add_page("Home", "house", home.app)
|
13 |
+
app.add_page("About", "info-circle", about.app)
|
14 |
+
app.add_page("App", "cast", ocr_comparator.app)
|
15 |
+
|
16 |
+
# The main app
|
17 |
+
app.run()
|
README.md
CHANGED
@@ -5,7 +5,8 @@ colorFrom: purple
|
|
5 |
colorTo: green
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.27.2
|
8 |
-
app_file:
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
|
|
5 |
colorTo: green
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.27.2
|
8 |
+
app_file: Home.py
|
9 |
+
tags: [streamlit, ocr]
|
10 |
pinned: false
|
11 |
---
|
12 |
|
__pycache__/multipage.cpython-37.pyc
ADDED
Binary file (2.65 kB). View file
|
|
app_pages/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app_pages/__pycache__/about.cpython-37.pyc
ADDED
Binary file (2.02 kB). View file
|
|
app_pages/__pycache__/home.cpython-37.pyc
ADDED
Binary file (889 Bytes). View file
|
|
app_pages/__pycache__/ocr_comparator.cpython-37.pyc
ADDED
Binary file (48.1 kB). View file
|
|
app_pages/about.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
def app():
|
4 |
+
st.title("OCR solutions comparator")
|
5 |
+
|
6 |
+
st.write("")
|
7 |
+
st.write("")
|
8 |
+
st.write("")
|
9 |
+
|
10 |
+
st.markdown("##### This app allows you to compare, from a given picture, the results of different solutions:")
|
11 |
+
st.markdown("##### *EasyOcr, PaddleOCR, MMOCR, Tesseract*")
|
12 |
+
st.write("")
|
13 |
+
st.write("")
|
14 |
+
|
15 |
+
st.markdown(''' The 1st step is to choose the language for the text recognition (not all solutions \
|
16 |
+
support the same languages), and then choose the picture to consider. It is possible to upload a file, \
|
17 |
+
to take a picture, or to use a demo file. \
|
18 |
+
It is then possible to change the default values for the text area detection process, \
|
19 |
+
before launching the detection task for each solution.''')
|
20 |
+
st.write("")
|
21 |
+
|
22 |
+
st.markdown(''' The different results are then presented. The 2nd step is to choose one of these \
|
23 |
+
detection results, in order to carry out the text recognition process there. It is also possible to change \
|
24 |
+
the default settings for each solution.''')
|
25 |
+
st.write("")
|
26 |
+
|
27 |
+
st.markdown("###### The recognition results appear in 2 formats:")
|
28 |
+
st.markdown(''' - a visual format resumes the initial image, replacing the detected areas with \
|
29 |
+
the recognized text. The background is + or - strongly colored in green according to the \
|
30 |
+
confidence level of the recognition.
|
31 |
+
A slider allows you to change the font size, another \
|
32 |
+
allows you to modify the confidence threshold above which the text color changes: if it is at \
|
33 |
+
70% for example, then all the texts with a confidence threshold higher or equal to 70 will appear \
|
34 |
+
in white, in black otherwise.''')
|
35 |
+
|
36 |
+
st.markdown(" - a detailed format presents the results in a table, for each text box detected. \
|
37 |
+
It is possible to download this results in a local csv file.")
|
app_pages/home.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
def app():
|
4 |
+
st.image('ocr.png')
|
5 |
+
|
6 |
+
st.write("")
|
7 |
+
|
8 |
+
st.markdown('''#### OCR, or Optical Character Recognition, is a computer vision task, \
|
9 |
+
which includes the detection of text areas, and the recognition of characters.''')
|
10 |
+
st.write("")
|
11 |
+
st.write("")
|
12 |
+
|
13 |
+
st.markdown("##### This app allows you to compare, from a given image, the results of different solutions:")
|
14 |
+
st.markdown("##### *EasyOcr, PaddleOCR, MMOCR, Tesseract*")
|
15 |
+
st.write("")
|
16 |
+
st.write("")
|
17 |
+
st.markdown("👈 Select the **About** page from the sidebar for information on how the app works")
|
18 |
+
|
19 |
+
st.markdown("👈 or directly select the **App** page")
|
app_pages/img_demo_1.jpg
ADDED
app_pages/img_demo_2.jpg
ADDED
app_pages/ocr.png
ADDED
app_pages/ocr_comparator.py
ADDED
@@ -0,0 +1,1421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This Streamlit app allows you to compare, from a given image, the results of different solutions:
|
2 |
+
EasyOcr, PaddleOCR, MMOCR, Tesseract
|
3 |
+
"""
|
4 |
+
import streamlit as st
|
5 |
+
import plotly.express as px
|
6 |
+
import numpy as np
|
7 |
+
import math
|
8 |
+
import pandas as pd
|
9 |
+
from time import sleep
|
10 |
+
|
11 |
+
import cv2
|
12 |
+
from PIL import Image, ImageColor
|
13 |
+
import PIL
|
14 |
+
import easyocr
|
15 |
+
from paddleocr import PaddleOCR
|
16 |
+
from mmocr.utils.ocr import MMOCR
|
17 |
+
import pytesseract
|
18 |
+
from pytesseract import Output
|
19 |
+
import os
|
20 |
+
from mycolorpy import colorlist as mcp
|
21 |
+
|
22 |
+
|
23 |
+
###################################################################################################
|
24 |
+
## MAIN
|
25 |
+
###################################################################################################
|
26 |
+
def app():
|
27 |
+
|
28 |
+
###################################################################################################
|
29 |
+
## FUNCTIONS
|
30 |
+
###################################################################################################
|
31 |
+
|
32 |
+
@st.cache
|
33 |
+
def convert_df(in_df):
|
34 |
+
"""Convert data frame function, used by download button
|
35 |
+
|
36 |
+
Args:
|
37 |
+
in_df (data frame): data frame to convert
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
data frame: converted data frame
|
41 |
+
"""
|
42 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
43 |
+
return in_df.to_csv().encode('utf-8')
|
44 |
+
|
45 |
+
###
|
46 |
+
def easyocr_coord_convert(in_list_coord):
|
47 |
+
"""Convert easyocr coordinates to standard format used by others functions
|
48 |
+
|
49 |
+
Args:
|
50 |
+
in_list_coord (list of numbers): format [x_min, x_max, y_min, y_max]
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
list of lists: format [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ]
|
54 |
+
"""
|
55 |
+
|
56 |
+
coord = in_list_coord
|
57 |
+
return [[coord[0], coord[2]], [coord[1], coord[2]], [coord[1], coord[3]], [coord[0], coord[3]]]
|
58 |
+
|
59 |
+
###
|
60 |
+
@st.cache(show_spinner=False)
|
61 |
+
def initializations():
|
62 |
+
"""Initializations for the app
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
list of strings : list of OCR solutions names
|
66 |
+
(['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract'])
|
67 |
+
dict : names and indices of the OCR solutions
|
68 |
+
({'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3})
|
69 |
+
list of dicts : list of languages supported by each OCR solution
|
70 |
+
list of int : columns for recognition details results
|
71 |
+
dict : confidence color scale
|
72 |
+
plotly figure : confidence color scale figure
|
73 |
+
"""
|
74 |
+
# the readers considered
|
75 |
+
out_reader_type_list = ['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract']
|
76 |
+
out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3}
|
77 |
+
|
78 |
+
# Columns for recognition details results
|
79 |
+
out_cols_size = [2] + [2,1]*(len(out_reader_type_list)-1) # Except Tesseract
|
80 |
+
|
81 |
+
# Dicts of laguages supported by each reader
|
82 |
+
out_dict_lang_easyocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Angika': 'ang', \
|
83 |
+
'Arabic': 'ar', 'Assamese': 'as', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
|
84 |
+
'Bulgarian': 'bg', 'Bihari': 'bh', 'Bhojpuri': 'bho', 'Bengali': 'bn', 'Bosnian': 'bs', \
|
85 |
+
'Simplified Chinese': 'ch_sim', 'Traditional Chinese': 'ch_tra', 'Chechen': 'che', \
|
86 |
+
'Czech': 'cs', 'Welsh': 'cy', 'Danish': 'da', 'Dargwa': 'dar', 'German': 'de', \
|
87 |
+
'English': 'en', 'Spanish': 'es', 'Estonian': 'et', 'Persian (Farsi)': 'fa', 'French': 'fr', \
|
88 |
+
'Irish': 'ga', 'Goan Konkani': 'gom', 'Hindi': 'hi', 'Croatian': 'hr', 'Hungarian': 'hu', \
|
89 |
+
'Indonesian': 'id', 'Ingush': 'inh', 'Icelandic': 'is', 'Italian': 'it', 'Japanese': 'ja', \
|
90 |
+
'Kabardian': 'kbd', 'Kannada': 'kn', 'Korean': 'ko', 'Kurdish': 'ku', 'Latin': 'la', \
|
91 |
+
'Lak': 'lbe', 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Latvian': 'lv', 'Magahi': 'mah', \
|
92 |
+
'Maithili': 'mai', 'Maori': 'mi', 'Mongolian': 'mn', 'Marathi': 'mr', 'Malay': 'ms', \
|
93 |
+
'Maltese': 'mt', 'Nepali': 'ne', 'Newari': 'new', 'Dutch': 'nl', 'Norwegian': 'no', \
|
94 |
+
'Occitan': 'oc', 'Pali': 'pi', 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', \
|
95 |
+
'Russian': 'ru', 'Serbian (cyrillic)': 'rs_cyrillic', 'Serbian (latin)': 'rs_latin', \
|
96 |
+
'Nagpuri': 'sck', 'Slovak': 'sk', 'Slovenian': 'sl', 'Albanian': 'sq', 'Swedish': 'sv', \
|
97 |
+
'Swahili': 'sw', 'Tamil': 'ta', 'Tabassaran': 'tab', 'Telugu': 'te', 'Thai': 'th', \
|
98 |
+
'Tajik': 'tjk', 'Tagalog': 'tl', 'Turkish': 'tr', 'Uyghur': 'ug', 'Ukranian': 'uk', \
|
99 |
+
'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi'}
|
100 |
+
|
101 |
+
out_dict_lang_ppocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Albanian': 'sq', \
|
102 |
+
'Angika': 'ang', 'Arabic': 'ar', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
|
103 |
+
'Bhojpuri': 'bho','Bihari': 'bh','Bosnian': 'bs','Bulgarian': 'bg','Chinese & English': 'ch', \
|
104 |
+
'Chinese Traditional': 'chinese_cht', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', \
|
105 |
+
'Dargwa': 'dar', 'Dutch': 'nl', 'English': 'en', 'Estonian': 'et', 'French': 'fr', \
|
106 |
+
'German': 'german','Goan Konkani': 'gom','Hindi': 'hi','Hungarian': 'hu','Icelandic': 'is', \
|
107 |
+
'Indonesian': 'id', 'Ingush': 'inh', 'Irish': 'ga', 'Italian': 'it', 'Japan': 'japan', \
|
108 |
+
'Kabardian': 'kbd', 'Korean': 'korean', 'Kurdish': 'ku', 'Lak': 'lbe', 'Latvian': 'lv', \
|
109 |
+
'Lezghian': 'lez', 'Lithuanian': 'lt', 'Magahi': 'mah', 'Maithili': 'mai', 'Malay': 'ms', \
|
110 |
+
'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nagpur': 'sck', \
|
111 |
+
'Nepali': 'ne', 'Newari': 'new', 'Norwegian': 'no', 'Occitan': 'oc', 'Persian': 'fa', \
|
112 |
+
'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', 'Russia': 'ru', 'Saudi Arabia': 'sa', \
|
113 |
+
'Serbian(cyrillic)': 'rs_cyrillic', 'Serbian(latin)': 'rs_latin', 'Slovak': 'sk', \
|
114 |
+
'Slovenian': 'sl', 'Spanish': 'es', 'Swahili': 'sw', 'Swedish': 'sv', 'Tabassaran': 'tab', \
|
115 |
+
'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \
|
116 |
+
'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'}
|
117 |
+
|
118 |
+
out_dict_lang_mmocr = {'English & Chinese': 'en'}
|
119 |
+
|
120 |
+
out_dict_lang_tesseract = {'Afrikaans': 'afr','Albanian': 'sqi','Amharic': 'amh', \
|
121 |
+
'Arabic': 'ara', 'Armenian': 'hye','Assamese': 'asm','Azerbaijani - Cyrilic': 'aze_cyrl', \
|
122 |
+
'Azerbaijani': 'aze', 'Basque': 'eus','Belarusian': 'bel','Bengali': 'ben','Bosnian': 'bos', \
|
123 |
+
'Breton': 'bre', 'Bulgarian': 'bul','Burmese': 'mya','Catalan; Valencian': 'cat', \
|
124 |
+
'Cebuano': 'ceb', 'Central Khmer': 'khm','Cherokee': 'chr','Chinese - Simplified': 'chi_sim', \
|
125 |
+
'Chinese - Traditional': 'chi_tra','Corsican': 'cos','Croatian': 'hrv','Czech': 'ces', \
|
126 |
+
'Danish':'dan','Dutch; Flemish':'nld','Dzongkha':'dzo','English, Middle (1100-1500)':'enm', \
|
127 |
+
'English': 'eng','Esperanto': 'epo','Estonian': 'est','Faroese': 'fao', \
|
128 |
+
'Filipino (old - Tagalog)': 'fil','Finnish': 'fin','French, Middle (ca.1400-1600)': 'frm', \
|
129 |
+
'French': 'fra','Galician': 'glg','Georgian - Old': 'kat_old','Georgian': 'kat', \
|
130 |
+
'German - Fraktur': 'frk','German': 'deu','Greek, Modern (1453-)': 'ell','Gujarati': 'guj', \
|
131 |
+
'Haitian; Haitian Creole': 'hat','Hebrew': 'heb','Hindi': 'hin','Hungarian': 'hun', \
|
132 |
+
'Icelandic': 'isl','Indonesian': 'ind','Inuktitut': 'iku','Irish': 'gle', \
|
133 |
+
'Italian - Old': 'ita_old','Italian': 'ita','Japanese': 'jpn','Javanese': 'jav', \
|
134 |
+
'Kannada': 'kan','Kazakh': 'kaz','Kirghiz; Kyrgyz': 'kir','Korean (vertical)': 'kor_vert', \
|
135 |
+
'Korean': 'kor','Kurdish (Arabic Script)': 'kur_ara','Lao': 'lao','Latin': 'lat', \
|
136 |
+
'Latvian':'lav','Lithuanian':'lit','Luxembourgish':'ltz','Macedonian':'mkd','Malay':'msa', \
|
137 |
+
'Malayalam': 'mal','Maltese': 'mlt','Maori': 'mri','Marathi': 'mar','Mongolian': 'mon', \
|
138 |
+
'Nepali': 'nep','Norwegian': 'nor','Occitan (post 1500)': 'oci', \
|
139 |
+
'Orientation and script detection module':'osd','Oriya':'ori','Panjabi; Punjabi':'pan', \
|
140 |
+
'Persian':'fas','Polish':'pol','Portuguese':'por','Pushto; Pashto':'pus','Quechua':'que', \
|
141 |
+
'Romanian; Moldavian; Moldovan': 'ron','Russian': 'rus','Sanskrit': 'san', \
|
142 |
+
'Scottish Gaelic': 'gla','Serbian - Latin': 'srp_latn','Serbian': 'srp','Sindhi': 'snd', \
|
143 |
+
'Sinhala; Sinhalese': 'sin','Slovak': 'slk','Slovenian': 'slv', \
|
144 |
+
'Spanish; Castilian - Old': 'spa_old','Spanish; Castilian': 'spa','Sundanese': 'sun', \
|
145 |
+
'Swahili': 'swa','Swedish': 'swe','Syriac': 'syr','Tajik': 'tgk','Tamil': 'tam', \
|
146 |
+
'Tatar':'tat','Telugu':'tel','Thai':'tha','Tibetan':'bod','Tigrinya':'tir','Tonga':'ton', \
|
147 |
+
'Turkish': 'tur','Uighur; Uyghur': 'uig','Ukrainian': 'ukr','Urdu': 'urd', \
|
148 |
+
'Uzbek - Cyrilic': 'uzb_cyrl','Uzbek': 'uzb','Vietnamese': 'vie','Welsh': 'cym', \
|
149 |
+
'Western Frisian': 'fry','Yiddish': 'yid','Yoruba': 'yor'}
|
150 |
+
|
151 |
+
out_list_dict_lang = [out_dict_lang_easyocr, out_dict_lang_ppocr, out_dict_lang_mmocr, \
|
152 |
+
out_dict_lang_tesseract]
|
153 |
+
|
154 |
+
# Initialization of detection form
|
155 |
+
if 'columns_size' not in st.session_state:
|
156 |
+
st.session_state.columns_size = [2] + [1 for x in out_reader_type_list[1:]]
|
157 |
+
if 'column_width' not in st.session_state:
|
158 |
+
st.session_state.column_width = [400] + [300 for x in out_reader_type_list[1:]]
|
159 |
+
if 'columns_color' not in st.session_state:
|
160 |
+
st.session_state.columns_color = ["rgb(228,26,28)"] + \
|
161 |
+
["rgb(0,0,0)" for x in out_reader_type_list[1:]]
|
162 |
+
if 'list_coordinates' not in st.session_state:
|
163 |
+
st.session_state.list_coordinates = []
|
164 |
+
|
165 |
+
# Confidence color scale
|
166 |
+
out_list_confid = list(np.arange(0,101,1))
|
167 |
+
out_list_grad = mcp.gen_color_normalized(cmap="Greens",data_arr=np.array(out_list_confid))
|
168 |
+
out_dict_back_colors = {out_list_confid[i]: out_list_grad[i] \
|
169 |
+
for i in range(len(out_list_confid))}
|
170 |
+
|
171 |
+
list_y = [1 for i in out_list_confid]
|
172 |
+
df_confid = pd.DataFrame({'% confidence scale': out_list_confid, 'y': list_y})
|
173 |
+
|
174 |
+
out_fig = px.scatter(df_confid, x='% confidence scale', y='y', \
|
175 |
+
hover_data={'% confidence scale': True, 'y': False},
|
176 |
+
color=out_dict_back_colors.values(), range_y=[0.9,1.1], range_x=[0,100],
|
177 |
+
color_discrete_map="identity",height=50,symbol='y',symbol_sequence=['square'])
|
178 |
+
out_fig.update_xaxes(showticklabels=False)
|
179 |
+
out_fig.update_yaxes(showticklabels=False, range=[0.1, 1.1], visible=False)
|
180 |
+
out_fig.update_traces(marker_size=50)
|
181 |
+
out_fig.update_layout(paper_bgcolor="white", margin=dict(b=0,r=0,t=0,l=0), xaxis_side="top", \
|
182 |
+
showlegend=False)
|
183 |
+
|
184 |
+
return out_reader_type_list, out_reader_type_dict, out_list_dict_lang, \
|
185 |
+
out_cols_size, out_dict_back_colors, out_fig
|
186 |
+
|
187 |
+
###
|
188 |
+
@st.experimental_memo(show_spinner=False)
|
189 |
+
def init_easyocr(in_params):
|
190 |
+
"""Initialization of easyOCR reader
|
191 |
+
|
192 |
+
Args:
|
193 |
+
in_params (list): list with the language
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
easyocr reader: the easyocr reader instance
|
197 |
+
"""
|
198 |
+
out_ocr = easyocr.Reader(in_params)
|
199 |
+
return out_ocr
|
200 |
+
|
201 |
+
###
|
202 |
+
@st.cache(show_spinner=False)
|
203 |
+
def init_ppocr(in_params):
|
204 |
+
"""Initialization of PPOCR reader
|
205 |
+
|
206 |
+
Args:
|
207 |
+
in_params (dict): dict with parameters
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
ppocr reader: the ppocr reader instance
|
211 |
+
"""
|
212 |
+
out_ocr = PaddleOCR(lang=in_params[0], **in_params[1])
|
213 |
+
return out_ocr
|
214 |
+
|
215 |
+
###
|
216 |
+
@st.experimental_memo(show_spinner=False)
|
217 |
+
def init_mmocr(in_params):
|
218 |
+
"""Initialization of MMOCR reader
|
219 |
+
|
220 |
+
Args:
|
221 |
+
in_params (dict): dict with parameters
|
222 |
+
|
223 |
+
Returns:
|
224 |
+
mmocr reader: the ppocr reader instance
|
225 |
+
"""
|
226 |
+
out_ocr = MMOCR(recog=None, **in_params[1])
|
227 |
+
return out_ocr
|
228 |
+
|
229 |
+
###
|
230 |
+
def init_readers(in_list_params):
|
231 |
+
"""Initialization of the readers, and return them as list
|
232 |
+
|
233 |
+
Args:
|
234 |
+
in_list_params (list): list of dicts of parameters for each reader
|
235 |
+
|
236 |
+
Returns:
|
237 |
+
list: list of the reader's instances
|
238 |
+
"""
|
239 |
+
# Instantiations of the readers :
|
240 |
+
# - EasyOCR
|
241 |
+
with st.spinner("EasyOCR reader initialization in progress ..."):
|
242 |
+
reader_easyocr = init_easyocr([in_list_params[0][0]])
|
243 |
+
|
244 |
+
# - PPOCR
|
245 |
+
# Paddleocr
|
246 |
+
with st.spinner("PPOCR reader initialization in progress ..."):
|
247 |
+
reader_ppocr = init_ppocr(in_list_params[1])
|
248 |
+
|
249 |
+
# - MMOCR
|
250 |
+
with st.spinner("MMOCR reader initialization in progress ..."):
|
251 |
+
reader_mmocr = init_mmocr(in_list_params[2])
|
252 |
+
|
253 |
+
out_list_readers = [reader_easyocr, reader_ppocr, reader_mmocr]
|
254 |
+
|
255 |
+
return out_list_readers
|
256 |
+
|
257 |
+
###
|
258 |
+
def load_image(in_image_file):
|
259 |
+
"""Load input file and open it
|
260 |
+
|
261 |
+
Args:
|
262 |
+
in_image_file (string or Streamlit UploadedFile): image to consider
|
263 |
+
|
264 |
+
Returns:
|
265 |
+
string : locally saved image path (img.)
|
266 |
+
PIL.Image : input file opened with Pillow
|
267 |
+
matrix : input file opened with Opencv
|
268 |
+
"""
|
269 |
+
|
270 |
+
#if isinstance(in_image_file, str):
|
271 |
+
# out_image_path = "img."+in_image_file.split('.')[-1]
|
272 |
+
#else:
|
273 |
+
# out_image_path = "img."+in_image_file.name.split('.')[-1]
|
274 |
+
|
275 |
+
if isinstance(in_image_file, str):
|
276 |
+
out_image_path = "tmp_"+in_image_file
|
277 |
+
else:
|
278 |
+
out_image_path = "tmp_"+in_image_file.name
|
279 |
+
|
280 |
+
img = Image.open(in_image_file)
|
281 |
+
img_saved = img.save(out_image_path)
|
282 |
+
|
283 |
+
# Read image
|
284 |
+
out_image_orig = Image.open(out_image_path)
|
285 |
+
out_image_cv2 = cv2.cvtColor(cv2.imread(out_image_path), cv2.COLOR_BGR2RGB)
|
286 |
+
|
287 |
+
return out_image_path, out_image_orig, out_image_cv2
|
288 |
+
|
289 |
+
###
|
290 |
+
@st.experimental_memo(show_spinner=False)
|
291 |
+
def easyocr_detect(_in_reader, in_image_path, in_params):
|
292 |
+
"""Detection with EasyOCR
|
293 |
+
|
294 |
+
Args:
|
295 |
+
_in_reader (EasyOCR reader) : the previously initialized instance
|
296 |
+
in_image_path (string ) : locally saved image path
|
297 |
+
in_params (list) : list with the parameters for detection
|
298 |
+
|
299 |
+
Returns:
|
300 |
+
list : list of the boxes coordinates
|
301 |
+
exception on error, string 'OK' otherwise
|
302 |
+
"""
|
303 |
+
try:
|
304 |
+
dict_param = in_params[1]
|
305 |
+
detection_result = _in_reader.detect(in_image_path,
|
306 |
+
#width_ths=0.7,
|
307 |
+
#mag_ratio=1.5
|
308 |
+
**dict_param
|
309 |
+
)
|
310 |
+
easyocr_coordinates = detection_result[0][0]
|
311 |
+
|
312 |
+
# The format of the coordinate is as follows: [x_min, x_max, y_min, y_max]
|
313 |
+
# Format boxes coordinates for draw
|
314 |
+
out_easyocr_boxes_coordinates = list(map(easyocr_coord_convert, easyocr_coordinates))
|
315 |
+
out_status = 'OK'
|
316 |
+
except Exception as e:
|
317 |
+
out_easyocr_boxes_coordinates = []
|
318 |
+
out_status = e
|
319 |
+
|
320 |
+
return out_easyocr_boxes_coordinates, out_status
|
321 |
+
|
322 |
+
###
|
323 |
+
@st.experimental_memo(show_spinner=False)
|
324 |
+
def ppocr_detect(_in_reader, in_image_path):
|
325 |
+
"""Detection with PPOCR
|
326 |
+
|
327 |
+
Args:
|
328 |
+
_in_reader (PPOCR reader) : the previously initialized instance
|
329 |
+
in_image_path (string ) : locally saved image path
|
330 |
+
|
331 |
+
Returns:
|
332 |
+
list : list of the boxes coordinates
|
333 |
+
exception on error, string 'OK' otherwise
|
334 |
+
"""
|
335 |
+
# PPOCR detection method
|
336 |
+
try:
|
337 |
+
out_ppocr_boxes_coordinates = _in_reader.ocr(in_image_path, rec=False)
|
338 |
+
out_status = 'OK'
|
339 |
+
except Exception as e:
|
340 |
+
out_ppocr_boxes_coordinates = []
|
341 |
+
out_status = e
|
342 |
+
|
343 |
+
return out_ppocr_boxes_coordinates, out_status
|
344 |
+
|
345 |
+
###
|
346 |
+
@st.experimental_memo(show_spinner=False)
|
347 |
+
def mmocr_detect(_in_reader, in_image_path):
|
348 |
+
"""Detection with MMOCR
|
349 |
+
|
350 |
+
Args:
|
351 |
+
_in_reader (EasyORC reader) : the previously initialized instance
|
352 |
+
in_image_path (string) : locally saved image path
|
353 |
+
in_params (list) : list with the parameters
|
354 |
+
|
355 |
+
Returns:
|
356 |
+
list : list of the boxes coordinates
|
357 |
+
exception on error, string 'OK' otherwise
|
358 |
+
"""
|
359 |
+
# MMOCR detection method
|
360 |
+
out_mmocr_boxes_coordinates = []
|
361 |
+
try:
|
362 |
+
det_result = _in_reader.readtext(in_image_path, details=True)
|
363 |
+
bboxes_list = [res['boundary_result'] for res in det_result]
|
364 |
+
for bboxes in bboxes_list:
|
365 |
+
for bbox in bboxes:
|
366 |
+
if len(bbox) > 9:
|
367 |
+
min_x = min(bbox[0:-1:2])
|
368 |
+
min_y = min(bbox[1:-1:2])
|
369 |
+
max_x = max(bbox[0:-1:2])
|
370 |
+
max_y = max(bbox[1:-1:2])
|
371 |
+
#box = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]
|
372 |
+
else:
|
373 |
+
min_x = min(bbox[0:-1:2])
|
374 |
+
min_y = min(bbox[1::2])
|
375 |
+
max_x = max(bbox[0:-1:2])
|
376 |
+
max_y = max(bbox[1::2])
|
377 |
+
box4 = [ [min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y] ]
|
378 |
+
out_mmocr_boxes_coordinates.append(box4)
|
379 |
+
out_status = 'OK'
|
380 |
+
except Exception as e:
|
381 |
+
out_status = e
|
382 |
+
|
383 |
+
return out_mmocr_boxes_coordinates, out_status
|
384 |
+
|
385 |
+
###
|
386 |
+
def cropped_1box(in_box, in_img):
|
387 |
+
"""Construction of an cropped image corresponding to an area of the initial image
|
388 |
+
|
389 |
+
Args:
|
390 |
+
in_box (list) : box with coordinates
|
391 |
+
in_img (matrix) : image
|
392 |
+
|
393 |
+
Returns:
|
394 |
+
matrix : cropped image
|
395 |
+
"""
|
396 |
+
box_ar = np.array(in_box).astype(np.int64)
|
397 |
+
x_min = box_ar[:, 0].min()
|
398 |
+
x_max = box_ar[:, 0].max()
|
399 |
+
y_min = box_ar[:, 1].min()
|
400 |
+
y_max = box_ar[:, 1].max()
|
401 |
+
out_cropped = in_img[y_min:y_max, x_min:x_max]
|
402 |
+
|
403 |
+
return out_cropped
|
404 |
+
|
405 |
+
###
|
406 |
+
@st.experimental_memo(show_spinner=False)
|
407 |
+
def tesserocr_detect(in_image_path, _in_img, in_params):
|
408 |
+
"""Detection with Tesseract
|
409 |
+
|
410 |
+
Args:
|
411 |
+
in_image_path (string) : locally saved image path
|
412 |
+
_in_img (PIL.Image) : image to consider
|
413 |
+
in_params (list) : list with the parameters for detection
|
414 |
+
|
415 |
+
Returns:
|
416 |
+
list : list of the boxes coordinates
|
417 |
+
exception on error, string 'OK' otherwise
|
418 |
+
"""
|
419 |
+
try:
|
420 |
+
dict_param = in_params[1]
|
421 |
+
df_res = pytesseract.image_to_data(_in_img, **dict_param, output_type=Output.DATAFRAME)
|
422 |
+
|
423 |
+
df_res['box'] = df_res.apply(lambda d: [[d['left'], d['top']], \
|
424 |
+
[d['left'] + d['width'], d['top']], \
|
425 |
+
[d['left'] + d['width'], d['top'] + d['height']], \
|
426 |
+
[d['left'], d['top'] + d['height']], \
|
427 |
+
], axis=1)
|
428 |
+
out_tesserocr_boxes_coordinates = df_res[df_res.word_num > 0]['box'].to_list()
|
429 |
+
out_status = 'OK'
|
430 |
+
except Exception as e:
|
431 |
+
out_tesserocr_boxes_coordinates = []
|
432 |
+
out_status = e
|
433 |
+
|
434 |
+
return out_tesserocr_boxes_coordinates, out_status
|
435 |
+
|
436 |
+
###
|
437 |
+
@st.experimental_memo(show_spinner=False)
|
438 |
+
def process_detect(in_image_path, _in_list_images, _in_list_readers, in_list_params, in_color):
|
439 |
+
"""Detection process for each OCR solution
|
440 |
+
|
441 |
+
Args:
|
442 |
+
in_image_path (string) : locally saved image path
|
443 |
+
_in_list_images (list) : list of original image
|
444 |
+
_in_list_readers (list) : list with previously initialized reader's instances
|
445 |
+
in_list_params (list) : list with dict parameters for each OCR solution
|
446 |
+
in_color (tuple) : color for boxes around text
|
447 |
+
|
448 |
+
Returns:
|
449 |
+
list: list of detection results images
|
450 |
+
list: list of boxes coordinates
|
451 |
+
"""
|
452 |
+
## ------- EasyOCR Text detection
|
453 |
+
with st.spinner('EasyOCR Text detection in progress ...'):
|
454 |
+
easyocr_boxes_coordinates,easyocr_status = easyocr_detect(_in_list_readers[0], \
|
455 |
+
in_image_path, in_list_params[0])
|
456 |
+
# Visualization
|
457 |
+
if easyocr_boxes_coordinates:
|
458 |
+
easyocr_image_detect = draw_detected(_in_list_images[0], easyocr_boxes_coordinates, \
|
459 |
+
in_color, 'None', 3)
|
460 |
+
else:
|
461 |
+
easyocr_boxes_coordinates = easyocr_status
|
462 |
+
##
|
463 |
+
|
464 |
+
## ------- PPOCR Text detection
|
465 |
+
with st.spinner('PPOCR Text detection in progress ...'):
|
466 |
+
ppocr_boxes_coordinates, ppocr_status = ppocr_detect(_in_list_readers[1], in_image_path)
|
467 |
+
# Visualization
|
468 |
+
if ppocr_boxes_coordinates:
|
469 |
+
ppocr_image_detect = draw_detected(_in_list_images[0], ppocr_boxes_coordinates, \
|
470 |
+
in_color, 'None', 3)
|
471 |
+
else:
|
472 |
+
ppocr_image_detect = ppocr_status
|
473 |
+
##
|
474 |
+
|
475 |
+
## ------- MMOCR Text detection
|
476 |
+
with st.spinner('MMOCR Text detection in progress ...'):
|
477 |
+
mmocr_boxes_coordinates, mmocr_status = mmocr_detect(_in_list_readers[2], in_image_path)
|
478 |
+
# Visualization
|
479 |
+
if mmocr_boxes_coordinates:
|
480 |
+
mmocr_image_detect = draw_detected(_in_list_images[0], mmocr_boxes_coordinates, \
|
481 |
+
in_color, 'None', 3)
|
482 |
+
else:
|
483 |
+
mmocr_image_detect = mmocr_status
|
484 |
+
##
|
485 |
+
|
486 |
+
## ------- Tesseract Text detection
|
487 |
+
with st.spinner('Tesseract Text detection in progress ...'):
|
488 |
+
tesserocr_boxes_coordinates, tesserocr_status = tesserocr_detect(in_image_path, \
|
489 |
+
_in_list_images[0], \
|
490 |
+
in_list_params[3])
|
491 |
+
# Visualization
|
492 |
+
if tesserocr_status == 'OK':
|
493 |
+
tesserocr_image_detect = draw_detected(_in_list_images[0],tesserocr_boxes_coordinates,\
|
494 |
+
in_color, 'None', 3)
|
495 |
+
else:
|
496 |
+
tesserocr_image_detect = tesserocr_status
|
497 |
+
##
|
498 |
+
#
|
499 |
+
out_list_images = _in_list_images + [easyocr_image_detect, ppocr_image_detect, \
|
500 |
+
mmocr_image_detect, tesserocr_image_detect]
|
501 |
+
out_list_coordinates = [easyocr_boxes_coordinates, ppocr_boxes_coordinates, \
|
502 |
+
mmocr_boxes_coordinates, tesserocr_boxes_coordinates]
|
503 |
+
#
|
504 |
+
|
505 |
+
return out_list_images, out_list_coordinates
|
506 |
+
|
507 |
+
###
|
508 |
+
def draw_detected(in_image, in_boxes_coordinates, in_color, posit='None', in_thickness=4):
|
509 |
+
"""Draw boxes around detected text
|
510 |
+
|
511 |
+
Args:
|
512 |
+
in_image (PIL.Image) : original image
|
513 |
+
in_boxes_coordinates (list) : boxes coordinates, from top to bottom and from left to right
|
514 |
+
[ [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ],
|
515 |
+
[ ... ]
|
516 |
+
]
|
517 |
+
in_color (tuple) : color for boxes around text
|
518 |
+
posit (str, optional) : position for text. Defaults to 'None'.
|
519 |
+
in_thickness (int, optional): thickness of the box. Defaults to 4.
|
520 |
+
|
521 |
+
Returns:
|
522 |
+
PIL.Image : original image with detected areas
|
523 |
+
"""
|
524 |
+
work_img = in_image.copy()
|
525 |
+
if in_boxes_coordinates:
|
526 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
527 |
+
for ind_box, box in enumerate(in_boxes_coordinates):
|
528 |
+
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
|
529 |
+
work_img = cv2.polylines(np.array(work_img), [box], True, in_color, in_thickness)
|
530 |
+
if posit != 'None':
|
531 |
+
if posit == 'top_left':
|
532 |
+
pos = tuple(box[0][0])
|
533 |
+
elif posit == 'top_right':
|
534 |
+
pos = tuple(box[1][0])
|
535 |
+
work_img = cv2.putText(work_img, str(ind_box+1), pos, font, 5.5, color, \
|
536 |
+
in_thickness,cv2.LINE_AA)
|
537 |
+
|
538 |
+
out_image_drawn = Image.fromarray(work_img)
|
539 |
+
else:
|
540 |
+
out_image_drawn = work_img
|
541 |
+
|
542 |
+
return out_image_drawn
|
543 |
+
|
544 |
+
###
|
545 |
+
@st.experimental_memo(show_spinner=False)
|
546 |
+
def get_cropped(in_boxes_coordinates, in_image_cv):
|
547 |
+
"""Construct list of cropped images corresponding of the input boxes coordinates list
|
548 |
+
|
549 |
+
Args:
|
550 |
+
in_boxes_coordinates (list) : list of boxes coordinates
|
551 |
+
in_image_cv (matrix) : original image
|
552 |
+
|
553 |
+
Returns:
|
554 |
+
list : list with cropped images
|
555 |
+
"""
|
556 |
+
out_list_images = []
|
557 |
+
for box in in_boxes_coordinates:
|
558 |
+
cropped = cropped_1box(box, in_image_cv)
|
559 |
+
out_list_images.append(cropped)
|
560 |
+
return out_list_images
|
561 |
+
|
562 |
+
###
|
563 |
+
def process_recog(in_list_readers, in_image_cv, in_boxes_coordinates, in_list_dict_params):
|
564 |
+
"""Recognition process for each OCR solution
|
565 |
+
|
566 |
+
Args:
|
567 |
+
in_list_readers (list) : list with previously initialized reader's instances
|
568 |
+
in_image_cv (matrix) : original image
|
569 |
+
in_boxes_coordinates (list) : list of boxes coordinates
|
570 |
+
in_list_dict_params (list) : list with dict parameters for each OCR solution
|
571 |
+
|
572 |
+
Returns:
|
573 |
+
data frame : results for each OCR solution, except Tesseract
|
574 |
+
data frame : results for Tesseract
|
575 |
+
list : status for each recognition (exception or 'OK')
|
576 |
+
"""
|
577 |
+
out_df_results = pd.DataFrame([])
|
578 |
+
|
579 |
+
list_text_easyocr = []
|
580 |
+
list_confidence_easyocr = []
|
581 |
+
list_text_ppocr = []
|
582 |
+
list_confidence_ppocr = []
|
583 |
+
list_text_mmocr = []
|
584 |
+
list_confidence_mmocr = []
|
585 |
+
|
586 |
+
# Create cropped images from detection
|
587 |
+
list_cropped_images = get_cropped(in_boxes_coordinates, in_image_cv)
|
588 |
+
|
589 |
+
# Recognize with EasyOCR
|
590 |
+
with st.spinner('EasyOCR Text recognition in progress ...'):
|
591 |
+
list_text_easyocr, list_confidence_easyocr, status_easyocr = \
|
592 |
+
easyocr_recog(list_cropped_images, in_list_readers[0], in_list_dict_params[0])
|
593 |
+
##
|
594 |
+
|
595 |
+
# Recognize with PPOCR
|
596 |
+
with st.spinner('PPOCR Text recognition in progress ...'):
|
597 |
+
list_text_ppocr, list_confidence_ppocr, status_ppocr = \
|
598 |
+
ppocr_recog(list_cropped_images, in_list_dict_params[1])
|
599 |
+
##
|
600 |
+
|
601 |
+
# Recognize with MMOCR
|
602 |
+
with st.spinner('MMOCR Text recognition in progress ...'):
|
603 |
+
list_text_mmocr, list_confidence_mmocr, status_mmocr = \
|
604 |
+
mmocr_recog(list_cropped_images, in_list_dict_params[2])
|
605 |
+
##
|
606 |
+
|
607 |
+
# Recognize with Tesseract
|
608 |
+
with st.spinner('Tesseract Text recognition in progress ...'):
|
609 |
+
out_df_results_tesseract, status_tesseract = \
|
610 |
+
tesserocr_recog(in_image_cv, in_list_dict_params[3], len(list_cropped_images))
|
611 |
+
##
|
612 |
+
|
613 |
+
# Create results data frame
|
614 |
+
out_df_results = pd.DataFrame({'cropped_image': list_cropped_images,
|
615 |
+
'text_easyocr': list_text_easyocr,
|
616 |
+
'confidence_easyocr': list_confidence_easyocr,
|
617 |
+
'text_ppocr': list_text_ppocr,
|
618 |
+
'confidence_ppocr': list_confidence_ppocr,
|
619 |
+
'text_mmocr': list_text_mmocr,
|
620 |
+
'confidence_mmocr': list_confidence_mmocr
|
621 |
+
}
|
622 |
+
)
|
623 |
+
|
624 |
+
out_list_reco_status = [status_easyocr, status_ppocr, status_mmocr, status_tesseract]
|
625 |
+
|
626 |
+
return out_df_results, out_df_results_tesseract, out_list_reco_status
|
627 |
+
|
628 |
+
###
|
629 |
+
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
630 |
+
def easyocr_recog(in_list_images, _in_reader_easyocr, in_params):
|
631 |
+
"""Recognition with EasyOCR
|
632 |
+
|
633 |
+
Args:
|
634 |
+
in_list_images (list) : list of cropped images
|
635 |
+
_in_reader_easyocr (EasyOCR reader) : the previously initialized instance
|
636 |
+
in_params (dict) : parameters for recognition
|
637 |
+
|
638 |
+
Returns:
|
639 |
+
list : list of recognized text
|
640 |
+
list : list of recognition confidence
|
641 |
+
string/Exception : recognition status
|
642 |
+
"""
|
643 |
+
progress_bar = st.progress(0)
|
644 |
+
out_list_text_easyocr = []
|
645 |
+
out_list_confidence_easyocr = []
|
646 |
+
## ------- EasyOCR Text recognition
|
647 |
+
try:
|
648 |
+
step = 0*len(in_list_images) # first recognition process
|
649 |
+
nb_steps = 4 * len(in_list_images)
|
650 |
+
for ind_img, cropped in enumerate(in_list_images):
|
651 |
+
result = _in_reader_easyocr.recognize(cropped, **in_params)
|
652 |
+
try:
|
653 |
+
out_list_text_easyocr.append(result[0][1])
|
654 |
+
out_list_confidence_easyocr.append(np.round(100*result[0][2], 1))
|
655 |
+
except:
|
656 |
+
out_list_text_easyocr.append('Not recognize')
|
657 |
+
out_list_confidence_easyocr.append(100.)
|
658 |
+
progress_bar.progress((step+ind_img+1)/nb_steps)
|
659 |
+
out_status = 'OK'
|
660 |
+
except Exception as e:
|
661 |
+
out_status = e
|
662 |
+
progress_bar.empty()
|
663 |
+
|
664 |
+
return out_list_text_easyocr, out_list_confidence_easyocr, out_status
|
665 |
+
|
666 |
+
###
|
667 |
+
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
668 |
+
def ppocr_recog(in_list_images, in_params):
|
669 |
+
"""Recognition with PPOCR
|
670 |
+
|
671 |
+
Args:
|
672 |
+
in_list_images (list) : list of cropped images
|
673 |
+
in_params (dict) : parameters for recognition
|
674 |
+
|
675 |
+
Returns:
|
676 |
+
list : list of recognized text
|
677 |
+
list : list of recognition confidence
|
678 |
+
string/Exception : recognition status
|
679 |
+
"""
|
680 |
+
## ------- PPOCR Text recognition
|
681 |
+
out_list_text_ppocr = []
|
682 |
+
out_list_confidence_ppocr = []
|
683 |
+
try:
|
684 |
+
reader_ppocr = PaddleOCR(**in_params)
|
685 |
+
step = 1*len(in_list_images) # second recognition process
|
686 |
+
nb_steps = 4 * len(in_list_images)
|
687 |
+
progress_bar = st.progress(step/nb_steps)
|
688 |
+
|
689 |
+
for ind_img, cropped in enumerate(in_list_images):
|
690 |
+
result = reader_ppocr.ocr(cropped, det=False, cls=False)
|
691 |
+
try:
|
692 |
+
out_list_text_ppocr.append(result[0][0])
|
693 |
+
out_list_confidence_ppocr.append(np.round(100*result[0][1], 1))
|
694 |
+
except:
|
695 |
+
out_list_text_ppocr.append('Not recognize')
|
696 |
+
out_list_confidence_ppocr.append(100.)
|
697 |
+
progress_bar.progress((step+ind_img+1)/nb_steps)
|
698 |
+
out_status = 'OK'
|
699 |
+
except Exception as e:
|
700 |
+
out_status = e
|
701 |
+
progress_bar.empty()
|
702 |
+
|
703 |
+
return out_list_text_ppocr, out_list_confidence_ppocr, out_status
|
704 |
+
|
705 |
+
###
|
706 |
+
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
707 |
+
def mmocr_recog(in_list_images, in_params):
|
708 |
+
"""Recognition with MMOCR
|
709 |
+
|
710 |
+
Args:
|
711 |
+
in_list_images (list) : list of cropped images
|
712 |
+
in_params (dict) : parameters for recognition
|
713 |
+
|
714 |
+
Returns:
|
715 |
+
list : list of recognized text
|
716 |
+
list : list of recognition confidence
|
717 |
+
string/Exception : recognition status
|
718 |
+
"""
|
719 |
+
## ------- MMOCR Text recognition
|
720 |
+
out_list_text_mmocr = []
|
721 |
+
out_list_confidence_mmocr = []
|
722 |
+
try:
|
723 |
+
reader_mmocr = MMOCR(det=None, **in_params)
|
724 |
+
step = 2*len(in_list_images) # third recognition process
|
725 |
+
nb_steps = 4 * len(in_list_images)
|
726 |
+
progress_bar = st.progress(step/nb_steps)
|
727 |
+
|
728 |
+
for ind_img, cropped in enumerate(in_list_images):
|
729 |
+
result = reader_mmocr.readtext(cropped, details=True)
|
730 |
+
try:
|
731 |
+
out_list_text_mmocr.append(result[0]['text'])
|
732 |
+
out_list_confidence_mmocr.append(np.round(100* \
|
733 |
+
(np.array(result[0]['score']).mean()), 1))
|
734 |
+
except:
|
735 |
+
out_list_text_mmocr.append('Not recognize')
|
736 |
+
out_list_confidence_mmocr.append(100.)
|
737 |
+
progress_bar.progress((step+ind_img+1)/nb_steps)
|
738 |
+
out_status = 'OK'
|
739 |
+
except Exception as e:
|
740 |
+
out_status = e
|
741 |
+
progress_bar.empty()
|
742 |
+
|
743 |
+
return out_list_text_mmocr, out_list_confidence_mmocr, out_status
|
744 |
+
|
745 |
+
###
|
746 |
+
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
747 |
+
def tesserocr_recog(in_img, in_params, in_nb_images):
|
748 |
+
"""Recognition with Tesseract
|
749 |
+
|
750 |
+
Args:
|
751 |
+
in_image_cv (matrix) : original image
|
752 |
+
in_params (dict) : parameters for recognition
|
753 |
+
in_nb_images : nb cropped images (used for progress bar)
|
754 |
+
|
755 |
+
Returns:
|
756 |
+
Pandas data frame : recognition results
|
757 |
+
string/Exception : recognition status
|
758 |
+
"""
|
759 |
+
## ------- Tesseract Text recognition
|
760 |
+
step = 3*in_nb_images # fourth recognition process
|
761 |
+
nb_steps = 4 * in_nb_images
|
762 |
+
progress_bar = st.progress(step/nb_steps)
|
763 |
+
|
764 |
+
try:
|
765 |
+
out_df_result = pytesseract.image_to_data(in_img, **in_params,output_type=Output.DATAFRAME)
|
766 |
+
|
767 |
+
out_df_result['box'] = out_df_result.apply(lambda d: [[d['left'], d['top']], \
|
768 |
+
[d['left'] + d['width'], d['top']], \
|
769 |
+
[d['left']+d['width'], d['top']+d['height']], \
|
770 |
+
[d['left'], d['top'] + d['height']], \
|
771 |
+
], axis=1)
|
772 |
+
out_df_result['cropped'] = out_df_result['box'].apply(lambda b: cropped_1box(b, in_img))
|
773 |
+
out_df_result = out_df_result[(out_df_result.word_num > 0) & (out_df_result.text != ' ')] \
|
774 |
+
.reset_index(drop=True)
|
775 |
+
out_status = 'OK'
|
776 |
+
except Exception as e:
|
777 |
+
out_df_result = pd.DataFrame([])
|
778 |
+
out_status = e
|
779 |
+
|
780 |
+
progress_bar.progress(1.)
|
781 |
+
|
782 |
+
return out_df_result, out_status
|
783 |
+
|
784 |
+
###
|
785 |
+
def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \
|
786 |
+
in_dict_back_colors, in_df_results_tesseract, in_reader_type_list, \
|
787 |
+
in_font_scale=1, in_conf_threshold=65):
|
788 |
+
"""Draw recognized text on original image, for each OCR solution used
|
789 |
+
|
790 |
+
Args:
|
791 |
+
in_image (matrix) : original image
|
792 |
+
in_boxes_coordinates (list) : list of boxes coordinates
|
793 |
+
in_list_texts (list): list of recognized text for each recognizer (except Tesseract)
|
794 |
+
in_list_confid (list): list of recognition confidence for each recognizer (except Tesseract)
|
795 |
+
in_df_results_tesseract (Pandas data frame): Tesseract recognition results
|
796 |
+
in_font_scale (int, optional): text font scale. Defaults to 3.
|
797 |
+
|
798 |
+
Returns:
|
799 |
+
shows the results container
|
800 |
+
"""
|
801 |
+
img = in_image.copy()
|
802 |
+
nb_readers = len(in_reader_type_list)
|
803 |
+
list_reco_images = [img.copy() for i in range(nb_readers)]
|
804 |
+
|
805 |
+
for num, box_ in enumerate(in_boxes_coordinates):
|
806 |
+
box = np.array(box_).astype(np.int64)
|
807 |
+
|
808 |
+
# For each box : draw the results of each recognizer
|
809 |
+
for ind_r in range(nb_readers-1):
|
810 |
+
confid = np.round(in_list_confid[ind_r][num], 0)
|
811 |
+
rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB")
|
812 |
+
if confid < in_conf_threshold:
|
813 |
+
text_color = (0, 0, 0)
|
814 |
+
else:
|
815 |
+
text_color = (255, 255, 255)
|
816 |
+
|
817 |
+
list_reco_images[ind_r] = cv2.rectangle(list_reco_images[ind_r], \
|
818 |
+
(box[0][0], box[0][1]), \
|
819 |
+
(box[2][0], box[2][1]), rgb_color, -1)
|
820 |
+
list_reco_images[ind_r] = cv2.putText(list_reco_images[ind_r], \
|
821 |
+
in_list_texts[ind_r][num], \
|
822 |
+
(box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \
|
823 |
+
cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2)
|
824 |
+
|
825 |
+
# Add Tesseract process
|
826 |
+
if not in_df_results_tesseract.empty:
|
827 |
+
ind_tessocr = nb_readers-1
|
828 |
+
for num, box_ in enumerate(in_df_results_tesseract['box'].to_list()):
|
829 |
+
box = np.array(box_).astype(np.int64)
|
830 |
+
confid = np.round(in_df_results_tesseract.iloc[num]['conf'], 0)
|
831 |
+
rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB")
|
832 |
+
if confid < in_conf_threshold:
|
833 |
+
text_color = (0, 0, 0)
|
834 |
+
else:
|
835 |
+
text_color = (255, 255, 255)
|
836 |
+
|
837 |
+
list_reco_images[ind_tessocr] = \
|
838 |
+
cv2.rectangle(list_reco_images[ind_tessocr], (box[0][0], box[0][1]), \
|
839 |
+
(box[2][0], box[2][1]), rgb_color, -1)
|
840 |
+
try:
|
841 |
+
list_reco_images[ind_tessocr] = \
|
842 |
+
cv2.putText(list_reco_images[ind_tessocr], \
|
843 |
+
in_df_results_tesseract.iloc[num]['text'], \
|
844 |
+
(box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \
|
845 |
+
cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2)
|
846 |
+
|
847 |
+
except:
|
848 |
+
|
849 |
+
pass
|
850 |
+
|
851 |
+
with show_reco.container():
|
852 |
+
# Draw the results, 2 images per line
|
853 |
+
reco_lines = math.ceil(len(in_reader_type_list) / 2)
|
854 |
+
column_width = 400
|
855 |
+
for ind_lig in range(0, reco_lines+1, 2):
|
856 |
+
cols = st.columns(2)
|
857 |
+
for ind_col in range(2):
|
858 |
+
ind = ind_lig + ind_col
|
859 |
+
if ind <= len(in_reader_type_list):
|
860 |
+
if in_reader_type_list[ind] == 'Tesseract':
|
861 |
+
column_title = '<p style="font-size: 20px;color:rgb(0,0,0); \
|
862 |
+
">Recognition with ' + in_reader_type_list[ind] + \
|
863 |
+
'<sp style="font-size: 17px"> (with its own detector) \
|
864 |
+
</sp></p>'
|
865 |
+
else:
|
866 |
+
column_title = '<p style="font-size: 20px;color:rgb(0,0,0); \
|
867 |
+
">Recognition with ' + \
|
868 |
+
in_reader_type_list[ind]+ '</p>'
|
869 |
+
cols[ind_col].markdown(column_title, unsafe_allow_html=True)
|
870 |
+
if st.session_state.list_reco_status[ind] == 'OK':
|
871 |
+
cols[ind_col].image(list_reco_images[ind], \
|
872 |
+
width=column_width, use_column_width=True)
|
873 |
+
else:
|
874 |
+
cols[ind_col].write(list_reco_status[ind], \
|
875 |
+
use_column_width=True)
|
876 |
+
|
877 |
+
st.markdown(' 💡 Bad font size? you can adjust it below and refresh:')
|
878 |
+
|
879 |
+
###
|
880 |
+
def highlight():
|
881 |
+
""" Highlight choosen detector results
|
882 |
+
"""
|
883 |
+
with show_detect.container():
|
884 |
+
columns_size = [1 for x in reader_type_list]
|
885 |
+
column_width = [300 for x in reader_type_list]
|
886 |
+
columns_color = ["rgb(0,0,0)" for x in reader_type_list]
|
887 |
+
columns_size[reader_type_dict[st.session_state.detect_reader]] = 2
|
888 |
+
column_width[reader_type_dict[st.session_state.detect_reader]] = 400
|
889 |
+
columns_color[reader_type_dict[st.session_state.detect_reader]] = "rgb(228,26,28)"
|
890 |
+
columns = st.columns(columns_size, ) #gap='medium')
|
891 |
+
|
892 |
+
for ind_col, col in enumerate(columns):
|
893 |
+
column_title = '<p style="font-size: 20px;color:'+columns_color[ind_col] + \
|
894 |
+
';">Detection with ' + reader_type_list[ind_col]+ '</p>'
|
895 |
+
col.markdown(column_title, unsafe_allow_html=True)
|
896 |
+
if isinstance(list_images[ind_col+2], PIL.Image.Image):
|
897 |
+
col.image(list_images[ind_col+2], width=column_width[ind_col], \
|
898 |
+
use_column_width=True)
|
899 |
+
else:
|
900 |
+
col.write(list_images[ind_col+2], use_column_width=True)
|
901 |
+
st.session_state.columns_size = columns_size
|
902 |
+
st.session_state.column_width = column_width
|
903 |
+
st.session_state.columns_color = columns_color
|
904 |
+
|
905 |
+
###
|
906 |
+
@st.cache(show_spinner=False)
|
907 |
+
def get_demo():
|
908 |
+
"""Get the demo files
|
909 |
+
|
910 |
+
Returns:
|
911 |
+
PIL.Image : input file opened with Pillow
|
912 |
+
PIL.Image : input file opened with Pillow
|
913 |
+
"""
|
914 |
+
|
915 |
+
out_img_demo_1 = Image.open("img_demo_1.jpg")
|
916 |
+
out_img_demo_2 = Image.open("img_demo_2.jpg")
|
917 |
+
|
918 |
+
return out_img_demo_1, out_img_demo_2
|
919 |
+
|
920 |
+
###
|
921 |
+
def raz():
|
922 |
+
st.session_state.list_coordinates = []
|
923 |
+
st.session_state.list_images = []
|
924 |
+
st.session_state.detect_reader = reader_type_list[0]
|
925 |
+
|
926 |
+
st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]]
|
927 |
+
st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]]
|
928 |
+
st.session_state.columns_color = ["rgb(228,26,28)"] + \
|
929 |
+
["rgb(0,0,0)" for x in reader_type_list[1:]]
|
930 |
+
|
931 |
+
# Clear caches
|
932 |
+
easyocr_detect.clear()
|
933 |
+
ppocr_detect.clear()
|
934 |
+
mmocr_detect.clear()
|
935 |
+
tesserocr_detect.clear()
|
936 |
+
process_detect.clear()
|
937 |
+
get_cropped.clear()
|
938 |
+
easyocr_recog.clear()
|
939 |
+
ppocr_recog.clear()
|
940 |
+
mmocr_recog.clear()
|
941 |
+
tesserocr_recog.clear()
|
942 |
+
|
943 |
+
|
944 |
+
##----------- Initializations ---------------------------------------------------------------------
|
945 |
+
#print("PID : ", os.getpid())
|
946 |
+
|
947 |
+
st.title("OCR solutions comparator")
|
948 |
+
st.markdown("##### *EasyOCR, PPOCR, MMOCR, Tesseract*")
|
949 |
+
#st.markdown("#### PID : " + str(os.getpid()))
|
950 |
+
|
951 |
+
# Initializations
|
952 |
+
with st.spinner("Initializations in progress ..."):
|
953 |
+
reader_type_list, reader_type_dict, list_dict_lang, \
|
954 |
+
cols_size, dict_back_colors, fig_colorscale = initializations()
|
955 |
+
img_demo_1, img_demo_2 = get_demo()
|
956 |
+
|
957 |
+
##----------- Choose language & image -------------------------------------------------------------
|
958 |
+
st.markdown("#### Choose languages for the text recognition:")
|
959 |
+
lang_col = st.columns(4)
|
960 |
+
easyocr_key_lang = lang_col[0].selectbox(reader_type_list[0]+" :", list_dict_lang[0].keys(), 26)
|
961 |
+
easyocr_lang = list_dict_lang[0][easyocr_key_lang]
|
962 |
+
ppocr_key_lang = lang_col[1].selectbox(reader_type_list[1]+" :", list_dict_lang[1].keys(), 22)
|
963 |
+
ppocr_lang = list_dict_lang[1][ppocr_key_lang]
|
964 |
+
mmocr_key_lang = lang_col[2].selectbox(reader_type_list[2]+" :", list_dict_lang[2].keys(), 0)
|
965 |
+
mmocr_lang = list_dict_lang[2][mmocr_key_lang]
|
966 |
+
tesserocr_key_lang = lang_col[3].selectbox(reader_type_list[3]+" :", list_dict_lang[3].keys(), 35)
|
967 |
+
tesserocr_lang = list_dict_lang[3][tesserocr_key_lang]
|
968 |
+
|
969 |
+
st.markdown("#### Choose picture:")
|
970 |
+
cols_pict = st.columns([1, 2])
|
971 |
+
img_typ = cols_pict[0].radio("", ['Upload file', 'Take a picture', 'Use a demo file'], \
|
972 |
+
index=0, on_change=raz)
|
973 |
+
|
974 |
+
if img_typ == 'Upload file':
|
975 |
+
image_file = cols_pict[1].file_uploader("Upload a file:", type=["jpg","jpeg"], on_change=raz)
|
976 |
+
if img_typ == 'Take a picture':
|
977 |
+
image_file = cols_pict[1].camera_input("Take a picture:", on_change=raz)
|
978 |
+
if img_typ == 'Use a demo file':
|
979 |
+
with st.expander('Choose a demo file:', expanded=True):
|
980 |
+
demo_used = st.radio('', ['File 1', 'File 2'], index=0, \
|
981 |
+
horizontal=True, on_change=raz)
|
982 |
+
cols_demo = st.columns([1, 2])
|
983 |
+
cols_demo[0].markdown('###### File 1')
|
984 |
+
cols_demo[0].image(img_demo_1, width=150)
|
985 |
+
cols_demo[1].markdown('###### File 2')
|
986 |
+
cols_demo[1].image(img_demo_2, width=300)
|
987 |
+
if demo_used == 'File 1':
|
988 |
+
image_file = 'img_demo_1.jpg'
|
989 |
+
else:
|
990 |
+
image_file = 'img_demo_2.jpg'
|
991 |
+
|
992 |
+
##----------- Process input image -----------------------------------------------------------------
|
993 |
+
if image_file is not None:
|
994 |
+
image_path, image_orig, image_cv2 = load_image(image_file)
|
995 |
+
list_images = [image_orig, image_cv2]
|
996 |
+
|
997 |
+
##----------- Form with original image & hyperparameters for detectors ----------------------------
|
998 |
+
with st.form("form1"):
|
999 |
+
col1, col2 = st.columns(2, ) #gap="medium")
|
1000 |
+
col1.markdown("##### Original image")
|
1001 |
+
col1.image(list_images[0], width=400)
|
1002 |
+
col2.markdown("##### Hyperparameters values for detection")
|
1003 |
+
|
1004 |
+
with col2.expander("Choose detection hyperparameters for " + reader_type_list[0], \
|
1005 |
+
expanded=False):
|
1006 |
+
t0_min_size = st.slider("min_size", 1, 20, 10, step=1, \
|
1007 |
+
help="min_size (int, default = 10) - Filter text box smaller than \
|
1008 |
+
minimum value in pixel")
|
1009 |
+
t0_text_threshold = st.slider("text_threshold", 0.1, 1., 0.7, step=0.1, \
|
1010 |
+
help="text_threshold (float, default = 0.7) - Text confidence threshold")
|
1011 |
+
t0_low_text = st.slider("low_text", 0.1, 1., 0.4, step=0.1, \
|
1012 |
+
help="low_text (float, default = 0.4) - Text low-bound score")
|
1013 |
+
t0_link_threshold = st.slider("link_threshold", 0.1, 1., 0.4, step=0.1, \
|
1014 |
+
help="link_threshold (float, default = 0.4) - Link confidence threshold")
|
1015 |
+
t0_canvas_size = st.slider("canvas_size", 2000, 5000, 2560, step=10, \
|
1016 |
+
help='''canvas_size (int, default = 2560) \n
|
1017 |
+
Maximum e size. Image bigger than this value will be resized down''')
|
1018 |
+
t0_mag_ratio = st.slider("mag_ratio", 0.1, 5., 1., step=0.1, \
|
1019 |
+
help="mag_ratio (float, default = 1) - Image magnification ratio")
|
1020 |
+
t0_slope_ths = st.slider("slope_ths", 0.01, 1., 0.1, step=0.01, \
|
1021 |
+
help='''slope_ths (float, default = 0.1) - Maximum slope \
|
1022 |
+
(delta y/delta x) to considered merging. \n
|
1023 |
+
Low valuans tiled boxes will not be merged.''')
|
1024 |
+
t0_ycenter_ths = st.slider("ycenter_ths", 0.1, 1., 0.5, step=0.1, \
|
1025 |
+
help='''ycenter_ths (float, default = 0.5) - Maximum shift in y direction. \n
|
1026 |
+
Boxes wiifferent level should not be merged.''')
|
1027 |
+
t0_height_ths = st.slider("height_ths", 0.1, 1., 0.5, step=0.1, \
|
1028 |
+
help='''height_ths (float, default = 0.5) - Maximum different in box height. \n
|
1029 |
+
Boxes wiery different text size should not be merged.''')
|
1030 |
+
t0_width_ths = st.slider("width_ths", 0.1, 1., 0.5, step=0.1, \
|
1031 |
+
help="width_ths (float, default = 0.5) - Maximum horizontal \
|
1032 |
+
distance to merge boxes.")
|
1033 |
+
t0_add_margin = st.slider("add_margin", 0.1, 1., 0.1, step=0.1, \
|
1034 |
+
help='''add_margin (float, default = 0.1) - \
|
1035 |
+
Extend bounding boxes in all direction by certain value. \n
|
1036 |
+
This is rtant for language with complex script (E.g. Thai).''')
|
1037 |
+
t0_optimal_num_chars = st.slider("optimal_num_chars", None, 100, None, step=10, \
|
1038 |
+
help="optimal_num_chars (int, default = None) - If specified, bounding boxes \
|
1039 |
+
with estimated number of characters near this value are returned first.")
|
1040 |
+
|
1041 |
+
with col2.expander("Choose detection hyperparameters for " + reader_type_list[1], \
|
1042 |
+
expanded=False):
|
1043 |
+
t1_det_algorithm = st.selectbox('det_algorithm', ['DB'], \
|
1044 |
+
help='Type of detection algorithm selected. (default = DB)')
|
1045 |
+
t1_det_max_side_len = st.slider('det_max_side_len', 500, 2000, 960, step=10, \
|
1046 |
+
help='''The maximum size of the long side of the image. (default = 960)\n
|
1047 |
+
Limit thximum image height and width.\n
|
1048 |
+
When theg side exceeds this value, the long side will be resized to this size, and the short side \
|
1049 |
+
will be ed proportionally.''')
|
1050 |
+
t1_det_db_thresh = st.slider('det_db_thresh', 0.1, 1., 0.3, step=0.1, \
|
1051 |
+
help='''Binarization threshold value of DB output map. (default = 0.3) \n
|
1052 |
+
Used to er the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result.''')
|
1053 |
+
t1_det_db_box_thresh = st.slider('det_db_box_thresh', 0.1, 1., 0.6, step=0.1, \
|
1054 |
+
help='''The threshold value of the DB output box. (default = 0.6) \n
|
1055 |
+
DB post-essing filter box threshold, if there is a missing box detected, it can be reduced as appropriate. \n
|
1056 |
+
Boxes sclower than this value will be discard.''')
|
1057 |
+
t1_det_db_unclip_ratio = st.slider('det_db_unclip_ratio', 1., 3.0, 1.6, step=0.1, \
|
1058 |
+
help='''The expanded ratio of DB output box. (default = 1.6) \n
|
1059 |
+
Indicatee compactness of the text box, the smaller the value, the closer the text box to the text.''')
|
1060 |
+
t1_det_east_score_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.8, step=0.1, \
|
1061 |
+
help="Binarization threshold value of EAST output map. (default = 0.8)")
|
1062 |
+
t1_det_east_cover_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.1, step=0.1, \
|
1063 |
+
help='''The threshold value of the EAST output box. (default = 0.1) \n
|
1064 |
+
Boxes sclower than this value will be discarded.''')
|
1065 |
+
t1_det_east_nms_thresh = st.slider('det_east_nms_thresh', 0.1, 1., 0.2, step=0.1, \
|
1066 |
+
help="The NMS threshold value of EAST model output box. (default = 0.2)")
|
1067 |
+
t1_det_db_score_mode = st.selectbox('det_db_score_mode', ['fast', 'slow'], \
|
1068 |
+
help='''slow: use polygon box to calculate bbox score, fast: use rectangle box \
|
1069 |
+
to calculate. (default = fast) \n
|
1070 |
+
Use rectlar box to calculate faster, and polygonal box more accurate for curved text area.''')
|
1071 |
+
|
1072 |
+
with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \
|
1073 |
+
expanded=False):
|
1074 |
+
t2_det = st.selectbox('det', ['DB_r18','DB_r50','DBPP_r50','DRRG','FCE_IC15', \
|
1075 |
+
'FCE_CTW_DCNv2','MaskRCNN_CTW','MaskRCNN_IC15', \
|
1076 |
+
'MaskRCNN_IC17', 'PANet_CTW','PANet_IC15','PS_CTW',\
|
1077 |
+
'PS_IC15','Tesseract','TextSnake'], 10, \
|
1078 |
+
help='Text detection algorithm. (default = PANet_IC15)')
|
1079 |
+
st.write("###### *More about text detection models* 👉 \
|
1080 |
+
[here](https://mmocr.readthedocs.io/en/latest/textdet_models.html)")
|
1081 |
+
t2_merge_xdist = st.slider('merge_xdist', 1, 50, 20, step=1, \
|
1082 |
+
help='The maximum x-axis distance to merge boxes. (defaut=20)')
|
1083 |
+
|
1084 |
+
with col2.expander("Choose detection hyperparameters for " + reader_type_list[3], \
|
1085 |
+
expanded=False):
|
1086 |
+
t3_psm = st.selectbox('Page segmentation mode (psm)', \
|
1087 |
+
[' - Default', \
|
1088 |
+
' 4 Assume a single column of text of variable sizes', \
|
1089 |
+
' 5 Assume a single uniform block of vertically aligned text', \
|
1090 |
+
' 6 Assume a single uniform block of text', \
|
1091 |
+
' 7 Treat the image as a single text line', \
|
1092 |
+
' 8 Treat the image as a single word', \
|
1093 |
+
' 9 Treat the image as a single word in a circle', \
|
1094 |
+
'10 Treat the image as a single character', \
|
1095 |
+
'11 Sparse text. Find as much text as possible in no \
|
1096 |
+
particular order', \
|
1097 |
+
'13 Raw line. Treat the image as a single text line, \
|
1098 |
+
bypassing hacks that are Tesseract-specific'])
|
1099 |
+
t3_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \
|
1100 |
+
'1 Neural nets LSTM engine only', \
|
1101 |
+
'2 Legacy + LSTM engines', \
|
1102 |
+
'3 Default, based on what is available'], 3)
|
1103 |
+
t3_whitelist = st.text_input('Limit tesseract to recognize only this characters :', \
|
1104 |
+
placeholder='Limit tesseract to recognize only this characters', \
|
1105 |
+
help='Example for numbers only : 0123456789')
|
1106 |
+
|
1107 |
+
color_hex = col2.color_picker('Set a color for box outlines:', '#004C99')
|
1108 |
+
color_part = color_hex.lstrip('#')
|
1109 |
+
color = tuple(int(color_part[i:i+2], 16) for i in (0, 2, 4))
|
1110 |
+
|
1111 |
+
submit_detect = st.form_submit_button("Launch detection")
|
1112 |
+
|
1113 |
+
##----------- Process text detection --------------------------------------------------------------
|
1114 |
+
if submit_detect:
|
1115 |
+
# Process text detection
|
1116 |
+
|
1117 |
+
if t0_optimal_num_chars == 0:
|
1118 |
+
t0_optimal_num_chars = None
|
1119 |
+
|
1120 |
+
# Construct the config Tesseract parameter
|
1121 |
+
t3_config = ''
|
1122 |
+
psm = t3_psm[:2]
|
1123 |
+
if psm != ' -':
|
1124 |
+
t3_config += '--psm ' + psm.strip()
|
1125 |
+
oem = t3_oem[:1]
|
1126 |
+
if oem != '3':
|
1127 |
+
t3_config += ' --oem ' + oem
|
1128 |
+
if t3_whitelist != '':
|
1129 |
+
t3_config += ' -c tessedit_char_whitelist=' + t3_whitelist
|
1130 |
+
|
1131 |
+
list_params_det = \
|
1132 |
+
[[easyocr_lang, \
|
1133 |
+
{'min_size': t0_min_size, 'text_threshold': t0_text_threshold, \
|
1134 |
+
'low_text': t0_low_text, 'link_threshold': t0_link_threshold, \
|
1135 |
+
'canvas_size': t0_canvas_size, 'mag_ratio': t0_mag_ratio, \
|
1136 |
+
'slope_ths': t0_slope_ths, 'ycenter_ths': t0_ycenter_ths, \
|
1137 |
+
'height_ths': t0_height_ths, 'width_ths': t0_width_ths, \
|
1138 |
+
'add_margin': t0_add_margin, 'optimal_num_chars': t0_optimal_num_chars \
|
1139 |
+
}], \
|
1140 |
+
[ppocr_lang, \
|
1141 |
+
{'det_algorithm': t1_det_algorithm, 'det_max_side_len': t1_det_max_side_len, \
|
1142 |
+
'det_db_thresh': t1_det_db_thresh, 'det_db_box_thresh': t1_det_db_box_thresh, \
|
1143 |
+
'det_db_unclip_ratio': t1_det_db_unclip_ratio, \
|
1144 |
+
'det_east_score_thresh': t1_det_east_score_thresh, \
|
1145 |
+
'det_east_cover_thresh': t1_det_east_cover_thresh, \
|
1146 |
+
'det_east_nms_thresh': t1_det_east_nms_thresh, \
|
1147 |
+
'det_db_score_mode': t1_det_db_score_mode}],
|
1148 |
+
[mmocr_lang, {'det': t2_det, 'merge_xdist': t2_merge_xdist}],
|
1149 |
+
[tesserocr_lang, {'lang': tesserocr_lang, 'config': t3_config}]
|
1150 |
+
]
|
1151 |
+
|
1152 |
+
show_info1 = st.empty()
|
1153 |
+
show_info1.info("Readers initializations in progress (it may take a while) ...")
|
1154 |
+
list_readers = init_readers(list_params_det)
|
1155 |
+
|
1156 |
+
show_info1.info("Text detection in progress ...")
|
1157 |
+
list_images, list_coordinates = process_detect(image_path, list_images, list_readers, \
|
1158 |
+
list_params_det, color)
|
1159 |
+
show_info1.empty()
|
1160 |
+
|
1161 |
+
# Clear previous recognition results
|
1162 |
+
st.session_state.df_results = pd.DataFrame([])
|
1163 |
+
|
1164 |
+
st.session_state.list_readers = list_readers
|
1165 |
+
st.session_state.list_coordinates = list_coordinates
|
1166 |
+
st.session_state.list_images = list_images
|
1167 |
+
st.session_state.list_params_det = list_params_det
|
1168 |
+
|
1169 |
+
if 'columns_size' not in st.session_state:
|
1170 |
+
st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]]
|
1171 |
+
if 'column_width' not in st.session_state:
|
1172 |
+
st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]]
|
1173 |
+
if 'columns_color' not in st.session_state:
|
1174 |
+
st.session_state.columns_color = ["rgb(228,26,28)"] + \
|
1175 |
+
["rgb(0,0,0)" for x in reader_type_list[1:]]
|
1176 |
+
|
1177 |
+
if st.session_state.list_coordinates:
|
1178 |
+
list_coordinates = st.session_state.list_coordinates
|
1179 |
+
list_images = st.session_state.list_images
|
1180 |
+
list_readers = st.session_state.list_readers
|
1181 |
+
list_params_det = st.session_state.list_params_det
|
1182 |
+
|
1183 |
+
##----------- Text detection results --------------------------------------------------------------
|
1184 |
+
st.subheader("Text detection")
|
1185 |
+
show_detect = st.empty()
|
1186 |
+
list_ok_detect = []
|
1187 |
+
with show_detect.container():
|
1188 |
+
columns = st.columns(st.session_state.columns_size, ) #gap='medium')
|
1189 |
+
for no_col, col in enumerate(columns):
|
1190 |
+
column_title = '<p style="font-size: 20px;color:' + \
|
1191 |
+
st.session_state.columns_color[no_col] + \
|
1192 |
+
';">Detection with ' + reader_type_list[no_col]+ '</p>'
|
1193 |
+
col.markdown(column_title, unsafe_allow_html=True)
|
1194 |
+
if isinstance(list_images[no_col+2], PIL.Image.Image):
|
1195 |
+
col.image(list_images[no_col+2], width=st.session_state.column_width[no_col], \
|
1196 |
+
use_column_width=True)
|
1197 |
+
list_ok_detect.append(reader_type_list[no_col])
|
1198 |
+
else:
|
1199 |
+
col.write(list_images[no_col+2], use_column_width=True)
|
1200 |
+
|
1201 |
+
st.subheader("Text recognition")
|
1202 |
+
|
1203 |
+
st.markdown("##### Using detection performed above by:")
|
1204 |
+
st.radio('Choose the detecter:', list_ok_detect, key='detect_reader', \
|
1205 |
+
horizontal=True, on_change=highlight)
|
1206 |
+
|
1207 |
+
##----------- Form with hyperparameters for recognition -----------------------
|
1208 |
+
st.markdown("##### Hyperparameters values for recognition:")
|
1209 |
+
with st.form("form2"):
|
1210 |
+
with st.expander("Choose recognition hyperparameters for " + reader_type_list[0], \
|
1211 |
+
expanded=False):
|
1212 |
+
t0_decoder = st.selectbox('decoder', ['greedy', 'beamsearch', 'wordbeamsearch'], \
|
1213 |
+
help="decoder (string, default = 'greedy') - options are 'greedy', \
|
1214 |
+
'beamsearch' and 'wordbeamsearch.")
|
1215 |
+
t0_beamWidth = st.slider('beamWidth', 2, 20, 5, step=1, \
|
1216 |
+
help="beamWidth (int, default = 5) - How many beam to keep when decoder = \
|
1217 |
+
'beamsearch' or 'wordbeamsearch'.")
|
1218 |
+
t0_batch_size = st.slider('batch_size', 1, 10, 1, step=1, \
|
1219 |
+
help="batch_size (int, default = 1) - batch_size>1 will make EasyOCR faster \
|
1220 |
+
but use more memory.")
|
1221 |
+
t0_workers = st.slider('workers', 0, 10, 0, step=1, \
|
1222 |
+
help="workers (int, default = 0) - Number thread used in of dataloader.")
|
1223 |
+
t0_allowlist = st.text_input('allowlist', value="", max_chars=None, \
|
1224 |
+
placeholder='Force EasyOCR to recognize only this subset of characters', \
|
1225 |
+
help='''allowlist (string) - Force EasyOCR to recognize only subset of characters.\n
|
1226 |
+
Usefor specific problem (E.g. license plate, etc.)''')
|
1227 |
+
t0_blocklist = st.text_input('blocklist', value="", max_chars=None, \
|
1228 |
+
placeholder='Block subset of character (will be ignored if allowlist is given)', \
|
1229 |
+
help='''blocklist (string) - Block subset of character. This argument will be \
|
1230 |
+
ignored if allowlist is given.''')
|
1231 |
+
t0_detail = st.radio('detail', [0, 1], 1, horizontal=True, \
|
1232 |
+
help="detail (int, default = 1) - Set this to 0 for simple output")
|
1233 |
+
t0_paragraph = st.radio('paragraph', [True, False], 1, horizontal=True, \
|
1234 |
+
help='paragraph (bool, default = False) - Combine result into paragraph')
|
1235 |
+
t0_contrast_ths = st.slider('contrast_ths', 0.05, 1., 0.1, step=0.01, \
|
1236 |
+
help='''contrast_ths (float, default = 0.1) - Text box with contrast lower than \
|
1237 |
+
this value will be passed into model 2 times.\n
|
1238 |
+
Firs with original image and second with contrast adjusted to 'adjust_contrast' value.\n
|
1239 |
+
The with more confident level will be returned as a result.''')
|
1240 |
+
t0_adjust_contrast = st.slider('adjust_contrast', 0.1, 1., 0.5, step=0.1, \
|
1241 |
+
help = 'adjust_contrast (float, default = 0.5) - target contrast level for low \
|
1242 |
+
contrast text box')
|
1243 |
+
|
1244 |
+
with st.expander("Choose recognition hyperparameters for " + reader_type_list[1], \
|
1245 |
+
expanded=False):
|
1246 |
+
t1_rec_algorithm = st.selectbox('rec_algorithm', ['CRNN', 'SVTR_LCNet'], 0, \
|
1247 |
+
help="Type of recognition algorithm selected. (default=CRNN)")
|
1248 |
+
t1_rec_batch_num = st.slider('rec_batch_num', 1, 50, step=1, \
|
1249 |
+
help="When performing recognition, the batchsize of forward images. \
|
1250 |
+
(default=30)")
|
1251 |
+
t1_max_text_length = st.slider('max_text_length', 3, 250, 25, step=1, \
|
1252 |
+
help="The maximum text length that the recognition algorithm can recognize. \
|
1253 |
+
(default=25)")
|
1254 |
+
t1_use_space_char = st.radio('use_space_char', [True, False], 0, horizontal=True, \
|
1255 |
+
help="Whether to recognize spaces. (default=TRUE)")
|
1256 |
+
t1_drop_score = st.slider('drop_score', 0., 1., 0.25, step=.05, \
|
1257 |
+
help="Filter the output by score (from the recognition model), and those \
|
1258 |
+
below this score will not be returned. (default=0.5)")
|
1259 |
+
|
1260 |
+
with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \
|
1261 |
+
expanded=False):
|
1262 |
+
t2_recog = st.selectbox('recog', ['ABINet','CRNN','CRNN_TPS','MASTER', \
|
1263 |
+
'NRTR_1/16-1/8','NRTR_1/8-1/4','RobustScanner','SAR','SAR_CN', \
|
1264 |
+
'SATRN','SATRN_sm','SEG','Tesseract'], 7, \
|
1265 |
+
help='Text recognition algorithm. (default = SAR)')
|
1266 |
+
st.write("###### *More about text recognition models* 👉 \
|
1267 |
+
[here](https://mmocr.readthedocs.io/en/latest/textrecog_models.html)")
|
1268 |
+
|
1269 |
+
with st.expander("Choose recognition hyperparameters for " + reader_type_list[3], \
|
1270 |
+
expanded=False):
|
1271 |
+
t3r_psm = st.selectbox('Page segmentation mode (psm)', \
|
1272 |
+
[' - Default', \
|
1273 |
+
' 4 Assume a single column of text of variable sizes', \
|
1274 |
+
' 5 Assume a single uniform block of vertically aligned \
|
1275 |
+
text', \
|
1276 |
+
' 6 Assume a single uniform block of text', \
|
1277 |
+
' 7 Treat the image as a single text line', \
|
1278 |
+
' 8 Treat the image as a single word', \
|
1279 |
+
' 9 Treat the image as a single word in a circle', \
|
1280 |
+
'10 Treat the image as a single character', \
|
1281 |
+
'11 Sparse text. Find as much text as possible in no \
|
1282 |
+
particular order', \
|
1283 |
+
'13 Raw line. Treat the image as a single text line, \
|
1284 |
+
bypassing hacks that are Tesseract-specific'])
|
1285 |
+
t3r_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \
|
1286 |
+
'1 Neural nets LSTM engine only', \
|
1287 |
+
'2 Legacy + LSTM engines', \
|
1288 |
+
'3 Default, based on what is available'], 3)
|
1289 |
+
t3r_whitelist = st.text_input('Limit tesseract to recognize only this \
|
1290 |
+
characters :', \
|
1291 |
+
placeholder='Limit tesseract to recognize only this characters', \
|
1292 |
+
help='Example for numbers only : 0123456789')
|
1293 |
+
|
1294 |
+
submit_reco = st.form_submit_button("Launch recognition")
|
1295 |
+
|
1296 |
+
if submit_reco:
|
1297 |
+
process_detect.clear()
|
1298 |
+
##----------- Process recognition ------------------------------------------
|
1299 |
+
reader_ind = reader_type_dict[st.session_state.detect_reader]
|
1300 |
+
list_boxes = list_coordinates[reader_ind]
|
1301 |
+
|
1302 |
+
# Construct the config Tesseract parameter
|
1303 |
+
t3r_config = ''
|
1304 |
+
psm = t3r_psm[:2]
|
1305 |
+
if psm != ' -':
|
1306 |
+
t3r_config += '--psm ' + psm.strip()
|
1307 |
+
oem = t3r_oem[:1]
|
1308 |
+
if oem != '3':
|
1309 |
+
t3r_config += ' --oem ' + oem
|
1310 |
+
if t3r_whitelist != '':
|
1311 |
+
t3r_config += ' -c tessedit_char_whitelist=' + t3r_whitelist
|
1312 |
+
|
1313 |
+
list_params_rec = \
|
1314 |
+
[{'decoder': t0_decoder, 'beamWidth': t0_beamWidth, \
|
1315 |
+
'batch_size': t0_batch_size, 'workers': t0_workers, \
|
1316 |
+
'allowlist': t0_allowlist, 'blocklist': t0_blocklist, \
|
1317 |
+
'detail': t0_detail, 'paragraph': t0_paragraph, \
|
1318 |
+
'contrast_ths': t0_contrast_ths, 'adjust_contrast': t0_adjust_contrast
|
1319 |
+
},
|
1320 |
+
{ **list_params_det[1][1], **{'rec_algorithm': t1_rec_algorithm, \
|
1321 |
+
'rec_batch_num': t1_rec_batch_num, 'max_text_length': t1_max_text_length, \
|
1322 |
+
'use_space_char': t1_use_space_char, 'drop_score': t1_drop_score}, \
|
1323 |
+
**{'lang': list_params_det[1][0]}
|
1324 |
+
},
|
1325 |
+
{'recog': t2_recog},
|
1326 |
+
{'lang': tesserocr_lang, 'config': t3r_config}
|
1327 |
+
]
|
1328 |
+
|
1329 |
+
show_info2 = st.empty()
|
1330 |
+
|
1331 |
+
with show_info2.container():
|
1332 |
+
st.info("Text recognition in progress ...")
|
1333 |
+
df_results, df_results_tesseract, list_reco_status = \
|
1334 |
+
process_recog(list_readers, list_images[1], list_boxes, list_params_rec)
|
1335 |
+
show_info2.empty()
|
1336 |
+
|
1337 |
+
st.session_state.df_results = df_results
|
1338 |
+
st.session_state.list_boxes = list_boxes
|
1339 |
+
st.session_state.df_results_tesseract = df_results_tesseract
|
1340 |
+
st.session_state.list_reco_status = list_reco_status
|
1341 |
+
|
1342 |
+
if 'df_results' in st.session_state:
|
1343 |
+
if not st.session_state.df_results.empty:
|
1344 |
+
##----------- Show recognition results ------------------------------------------------------------
|
1345 |
+
results_cols = st.session_state.df_results.columns
|
1346 |
+
list_col_text = np.arange(1, len(cols_size), 2)
|
1347 |
+
list_col_confid = np.arange(2, len(cols_size), 2)
|
1348 |
+
|
1349 |
+
dict_draw_reco = {'in_image': st.session_state.list_images[1], \
|
1350 |
+
'in_boxes_coordinates': st.session_state.list_boxes, \
|
1351 |
+
'in_list_texts': [st.session_state.df_results[x].to_list() \
|
1352 |
+
for x in results_cols[list_col_text]], \
|
1353 |
+
'in_list_confid': [st.session_state.df_results[x].to_list() \
|
1354 |
+
for x in results_cols[list_col_confid]], \
|
1355 |
+
'in_dict_back_colors': dict_back_colors, \
|
1356 |
+
'in_df_results_tesseract' : st.session_state.df_results_tesseract, \
|
1357 |
+
'in_reader_type_list': reader_type_list
|
1358 |
+
}
|
1359 |
+
show_reco = st.empty()
|
1360 |
+
|
1361 |
+
with st.form("form3"):
|
1362 |
+
st.plotly_chart(fig_colorscale, use_container_width=True)
|
1363 |
+
|
1364 |
+
col_font, col_threshold = st.columns(2)
|
1365 |
+
|
1366 |
+
col_font.slider('Font scale', 1, 7, 1, step=1, key="font_scale_sld")
|
1367 |
+
col_threshold.slider('% confidence threshold for text color change', 40, 100, 64, \
|
1368 |
+
step=1, key="conf_threshold_sld")
|
1369 |
+
col_threshold.write("(text color is black below this % confidence threshold, \
|
1370 |
+
and white above)")
|
1371 |
+
|
1372 |
+
draw_reco_images(**dict_draw_reco)
|
1373 |
+
|
1374 |
+
submit_resize = st.form_submit_button("Refresh")
|
1375 |
+
|
1376 |
+
if submit_resize:
|
1377 |
+
draw_reco_images(**dict_draw_reco, \
|
1378 |
+
in_font_scale=st.session_state.font_scale_sld, \
|
1379 |
+
in_conf_threshold=st.session_state.conf_threshold_sld)
|
1380 |
+
|
1381 |
+
st.subheader("Recognition details")
|
1382 |
+
with st.expander("Detailed areas for EasyOCR, PPOCR, MMOCR", expanded=True):
|
1383 |
+
cols = st.columns(cols_size)
|
1384 |
+
cols[0].markdown('#### Detected area')
|
1385 |
+
for i in range(1, (len(reader_type_list)-1)*2, 2):
|
1386 |
+
cols[i].markdown('#### with ' + reader_type_list[i//2])
|
1387 |
+
|
1388 |
+
for row in st.session_state.df_results.itertuples():
|
1389 |
+
#cols = st.columns(1 + len(reader_type_list)*2)
|
1390 |
+
cols = st.columns(cols_size)
|
1391 |
+
cols[0].image(row.cropped_image, width=150)
|
1392 |
+
for ind_col in range(1, len(cols), 2):
|
1393 |
+
cols[ind_col].write(getattr(row, results_cols[ind_col]))
|
1394 |
+
cols[ind_col+1].write("("+str( \
|
1395 |
+
getattr(row, results_cols[ind_col+1]))+"%)")
|
1396 |
+
|
1397 |
+
st.download_button(
|
1398 |
+
label="Download results as CSV file",
|
1399 |
+
data=convert_df(st.session_state.df_results),
|
1400 |
+
file_name='OCR_comparator_results.csv',
|
1401 |
+
mime='text/csv',
|
1402 |
+
)
|
1403 |
+
|
1404 |
+
if not st.session_state.df_results_tesseract.empty:
|
1405 |
+
with st.expander("Detailed areas for Tesseract", expanded=False):
|
1406 |
+
cols = st.columns([2,2,1])
|
1407 |
+
cols[0].markdown('#### Detected area')
|
1408 |
+
cols[1].markdown('#### with Tesseract')
|
1409 |
+
|
1410 |
+
for row in st.session_state.df_results_tesseract.itertuples():
|
1411 |
+
cols = st.columns([2,2,1])
|
1412 |
+
cols[0].image(row.cropped, width=150)
|
1413 |
+
cols[1].write(getattr(row, 'text'))
|
1414 |
+
cols[2].write("("+str(getattr(row, 'conf'))+"%)")
|
1415 |
+
|
1416 |
+
st.download_button(
|
1417 |
+
label="Download Tesseract results as CSV file",
|
1418 |
+
data=convert_df(st.session_state.df_results),
|
1419 |
+
file_name='OCR_comparator_Tesseract_results.csv',
|
1420 |
+
mime='text/csv',
|
1421 |
+
)
|
configs/_base_/default_runtime.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# yapf:disable
|
2 |
+
log_config = dict(
|
3 |
+
interval=5,
|
4 |
+
hooks=[
|
5 |
+
dict(type='TextLoggerHook')
|
6 |
+
])
|
7 |
+
# yapf:enable
|
8 |
+
dist_params = dict(backend='nccl')
|
9 |
+
log_level = 'INFO'
|
10 |
+
load_from = None
|
11 |
+
resume_from = None
|
12 |
+
workflow = [('train', 1)]
|
13 |
+
|
14 |
+
# disable opencv multithreading to avoid system being overloaded
|
15 |
+
opencv_num_threads = 0
|
16 |
+
# set multi-process start method as `fork` to speed up the training
|
17 |
+
mp_start_method = 'fork'
|
configs/_base_/det_datasets/ctw1500.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'IcdarDataset'
|
2 |
+
data_root = 'data/ctw1500'
|
3 |
+
|
4 |
+
train = dict(
|
5 |
+
type=dataset_type,
|
6 |
+
ann_file=f'{data_root}/instances_training.json',
|
7 |
+
img_prefix=f'{data_root}/imgs',
|
8 |
+
pipeline=None)
|
9 |
+
|
10 |
+
test = dict(
|
11 |
+
type=dataset_type,
|
12 |
+
ann_file=f'{data_root}/instances_test.json',
|
13 |
+
img_prefix=f'{data_root}/imgs',
|
14 |
+
pipeline=None)
|
15 |
+
|
16 |
+
train_list = [train]
|
17 |
+
|
18 |
+
test_list = [test]
|
configs/_base_/det_datasets/icdar2015.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'IcdarDataset'
|
2 |
+
data_root = 'data/icdar2015'
|
3 |
+
|
4 |
+
train = dict(
|
5 |
+
type=dataset_type,
|
6 |
+
ann_file=f'{data_root}/instances_training.json',
|
7 |
+
img_prefix=f'{data_root}/imgs',
|
8 |
+
pipeline=None)
|
9 |
+
|
10 |
+
test = dict(
|
11 |
+
type=dataset_type,
|
12 |
+
ann_file=f'{data_root}/instances_test.json',
|
13 |
+
img_prefix=f'{data_root}/imgs',
|
14 |
+
pipeline=None)
|
15 |
+
|
16 |
+
train_list = [train]
|
17 |
+
|
18 |
+
test_list = [test]
|
configs/_base_/det_datasets/icdar2017.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'IcdarDataset'
|
2 |
+
data_root = 'data/icdar2017'
|
3 |
+
|
4 |
+
train = dict(
|
5 |
+
type=dataset_type,
|
6 |
+
ann_file=f'{data_root}/instances_training.json',
|
7 |
+
img_prefix=f'{data_root}/imgs',
|
8 |
+
pipeline=None)
|
9 |
+
|
10 |
+
test = dict(
|
11 |
+
type=dataset_type,
|
12 |
+
ann_file=f'{data_root}/instances_val.json',
|
13 |
+
img_prefix=f'{data_root}/imgs',
|
14 |
+
pipeline=None)
|
15 |
+
|
16 |
+
train_list = [train]
|
17 |
+
|
18 |
+
test_list = [test]
|
configs/_base_/det_datasets/synthtext.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'TextDetDataset'
|
2 |
+
data_root = 'data/synthtext'
|
3 |
+
|
4 |
+
train = dict(
|
5 |
+
type=dataset_type,
|
6 |
+
ann_file=f'{data_root}/instances_training.lmdb',
|
7 |
+
loader=dict(
|
8 |
+
type='AnnFileLoader',
|
9 |
+
repeat=1,
|
10 |
+
file_format='lmdb',
|
11 |
+
parser=dict(
|
12 |
+
type='LineJsonParser',
|
13 |
+
keys=['file_name', 'height', 'width', 'annotations'])),
|
14 |
+
img_prefix=f'{data_root}/imgs',
|
15 |
+
pipeline=None)
|
16 |
+
|
17 |
+
train_list = [train]
|
18 |
+
test_list = [train]
|
configs/_base_/det_datasets/toy_data.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
root = 'tests/data/toy_dataset'
|
2 |
+
|
3 |
+
# dataset with type='TextDetDataset'
|
4 |
+
train1 = dict(
|
5 |
+
type='TextDetDataset',
|
6 |
+
img_prefix=f'{root}/imgs',
|
7 |
+
ann_file=f'{root}/instances_test.txt',
|
8 |
+
loader=dict(
|
9 |
+
type='AnnFileLoader',
|
10 |
+
repeat=4,
|
11 |
+
file_format='txt',
|
12 |
+
parser=dict(
|
13 |
+
type='LineJsonParser',
|
14 |
+
keys=['file_name', 'height', 'width', 'annotations'])),
|
15 |
+
pipeline=None,
|
16 |
+
test_mode=False)
|
17 |
+
|
18 |
+
# dataset with type='IcdarDataset'
|
19 |
+
train2 = dict(
|
20 |
+
type='IcdarDataset',
|
21 |
+
ann_file=f'{root}/instances_test.json',
|
22 |
+
img_prefix=f'{root}/imgs',
|
23 |
+
pipeline=None)
|
24 |
+
|
25 |
+
test = dict(
|
26 |
+
type='TextDetDataset',
|
27 |
+
img_prefix=f'{root}/imgs',
|
28 |
+
ann_file=f'{root}/instances_test.txt',
|
29 |
+
loader=dict(
|
30 |
+
type='AnnFileLoader',
|
31 |
+
repeat=1,
|
32 |
+
file_format='txt',
|
33 |
+
parser=dict(
|
34 |
+
type='LineJsonParser',
|
35 |
+
keys=['file_name', 'height', 'width', 'annotations'])),
|
36 |
+
pipeline=None,
|
37 |
+
test_mode=True)
|
38 |
+
|
39 |
+
train_list = [train1, train2]
|
40 |
+
|
41 |
+
test_list = [test]
|
configs/_base_/det_models/dbnet_r18_fpnc.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
type='DBNet',
|
3 |
+
backbone=dict(
|
4 |
+
type='mmdet.ResNet',
|
5 |
+
depth=18,
|
6 |
+
num_stages=4,
|
7 |
+
out_indices=(0, 1, 2, 3),
|
8 |
+
frozen_stages=-1,
|
9 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
10 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
|
11 |
+
norm_eval=False,
|
12 |
+
style='caffe'),
|
13 |
+
neck=dict(
|
14 |
+
type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256),
|
15 |
+
bbox_head=dict(
|
16 |
+
type='DBHead',
|
17 |
+
in_channels=256,
|
18 |
+
loss=dict(type='DBLoss', alpha=5.0, beta=10.0, bbce_loss=True),
|
19 |
+
postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')),
|
20 |
+
train_cfg=None,
|
21 |
+
test_cfg=None)
|
configs/_base_/det_models/dbnet_r50dcnv2_fpnc.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
type='DBNet',
|
3 |
+
backbone=dict(
|
4 |
+
type='mmdet.ResNet',
|
5 |
+
depth=50,
|
6 |
+
num_stages=4,
|
7 |
+
out_indices=(0, 1, 2, 3),
|
8 |
+
frozen_stages=-1,
|
9 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
10 |
+
norm_eval=False,
|
11 |
+
style='pytorch',
|
12 |
+
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
|
13 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
|
14 |
+
stage_with_dcn=(False, True, True, True)),
|
15 |
+
neck=dict(
|
16 |
+
type='FPNC', in_channels=[256, 512, 1024, 2048], lateral_channels=256),
|
17 |
+
bbox_head=dict(
|
18 |
+
type='DBHead',
|
19 |
+
in_channels=256,
|
20 |
+
loss=dict(type='DBLoss', alpha=5.0, beta=10.0, bbce_loss=True),
|
21 |
+
postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')),
|
22 |
+
train_cfg=None,
|
23 |
+
test_cfg=None)
|
configs/_base_/det_models/dbnetpp_r50dcnv2_fpnc.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
type='DBNet',
|
3 |
+
backbone=dict(
|
4 |
+
type='mmdet.ResNet',
|
5 |
+
depth=50,
|
6 |
+
num_stages=4,
|
7 |
+
out_indices=(0, 1, 2, 3),
|
8 |
+
frozen_stages=-1,
|
9 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
10 |
+
norm_eval=False,
|
11 |
+
style='pytorch',
|
12 |
+
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
|
13 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
|
14 |
+
stage_with_dcn=(False, True, True, True)),
|
15 |
+
neck=dict(
|
16 |
+
type='FPNC',
|
17 |
+
in_channels=[256, 512, 1024, 2048],
|
18 |
+
lateral_channels=256,
|
19 |
+
asf_cfg=dict(attention_type='ScaleChannelSpatial')),
|
20 |
+
bbox_head=dict(
|
21 |
+
type='DBHead',
|
22 |
+
in_channels=256,
|
23 |
+
loss=dict(type='DBLoss', alpha=5.0, beta=10.0, bbce_loss=True),
|
24 |
+
postprocessor=dict(
|
25 |
+
type='DBPostprocessor', text_repr_type='quad',
|
26 |
+
epsilon_ratio=0.002)),
|
27 |
+
train_cfg=None,
|
28 |
+
test_cfg=None)
|
configs/_base_/det_models/drrg_r50_fpn_unet.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
type='DRRG',
|
3 |
+
backbone=dict(
|
4 |
+
type='mmdet.ResNet',
|
5 |
+
depth=50,
|
6 |
+
num_stages=4,
|
7 |
+
out_indices=(0, 1, 2, 3),
|
8 |
+
frozen_stages=-1,
|
9 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
10 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
|
11 |
+
norm_eval=True,
|
12 |
+
style='caffe'),
|
13 |
+
neck=dict(
|
14 |
+
type='FPN_UNet', in_channels=[256, 512, 1024, 2048], out_channels=32),
|
15 |
+
bbox_head=dict(
|
16 |
+
type='DRRGHead',
|
17 |
+
in_channels=32,
|
18 |
+
text_region_thr=0.3,
|
19 |
+
center_region_thr=0.4,
|
20 |
+
loss=dict(type='DRRGLoss'),
|
21 |
+
postprocessor=dict(type='DRRGPostprocessor', link_thr=0.80)))
|
configs/_base_/det_models/fcenet_r50_fpn.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
type='FCENet',
|
3 |
+
backbone=dict(
|
4 |
+
type='mmdet.ResNet',
|
5 |
+
depth=50,
|
6 |
+
num_stages=4,
|
7 |
+
out_indices=(1, 2, 3),
|
8 |
+
frozen_stages=-1,
|
9 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
10 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
|
11 |
+
norm_eval=False,
|
12 |
+
style='pytorch'),
|
13 |
+
neck=dict(
|
14 |
+
type='mmdet.FPN',
|
15 |
+
in_channels=[512, 1024, 2048],
|
16 |
+
out_channels=256,
|
17 |
+
add_extra_convs='on_output',
|
18 |
+
num_outs=3,
|
19 |
+
relu_before_extra_convs=True,
|
20 |
+
act_cfg=None),
|
21 |
+
bbox_head=dict(
|
22 |
+
type='FCEHead',
|
23 |
+
in_channels=256,
|
24 |
+
scales=(8, 16, 32),
|
25 |
+
fourier_degree=5,
|
26 |
+
loss=dict(type='FCELoss', num_sample=50),
|
27 |
+
postprocessor=dict(
|
28 |
+
type='FCEPostprocessor',
|
29 |
+
text_repr_type='quad',
|
30 |
+
num_reconstr_points=50,
|
31 |
+
alpha=1.2,
|
32 |
+
beta=1.0,
|
33 |
+
score_thr=0.3)))
|
configs/_base_/det_models/fcenet_r50dcnv2_fpn.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
type='FCENet',
|
3 |
+
backbone=dict(
|
4 |
+
type='mmdet.ResNet',
|
5 |
+
depth=50,
|
6 |
+
num_stages=4,
|
7 |
+
out_indices=(1, 2, 3),
|
8 |
+
frozen_stages=-1,
|
9 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
10 |
+
norm_eval=True,
|
11 |
+
style='pytorch',
|
12 |
+
dcn=dict(type='DCNv2', deform_groups=2, fallback_on_stride=False),
|
13 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
|
14 |
+
stage_with_dcn=(False, True, True, True)),
|
15 |
+
neck=dict(
|
16 |
+
type='mmdet.FPN',
|
17 |
+
in_channels=[512, 1024, 2048],
|
18 |
+
out_channels=256,
|
19 |
+
add_extra_convs='on_output',
|
20 |
+
num_outs=3,
|
21 |
+
relu_before_extra_convs=True,
|
22 |
+
act_cfg=None),
|
23 |
+
bbox_head=dict(
|
24 |
+
type='FCEHead',
|
25 |
+
in_channels=256,
|
26 |
+
scales=(8, 16, 32),
|
27 |
+
fourier_degree=5,
|
28 |
+
loss=dict(type='FCELoss', num_sample=50),
|
29 |
+
postprocessor=dict(
|
30 |
+
type='FCEPostprocessor',
|
31 |
+
text_repr_type='poly',
|
32 |
+
num_reconstr_points=50,
|
33 |
+
alpha=1.0,
|
34 |
+
beta=2.0,
|
35 |
+
score_thr=0.3)))
|
configs/_base_/det_models/ocr_mask_rcnn_r50_fpn_ohem.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='OCRMaskRCNN',
|
4 |
+
backbone=dict(
|
5 |
+
type='mmdet.ResNet',
|
6 |
+
depth=50,
|
7 |
+
num_stages=4,
|
8 |
+
out_indices=(0, 1, 2, 3),
|
9 |
+
frozen_stages=1,
|
10 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
11 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
|
12 |
+
norm_eval=True,
|
13 |
+
style='pytorch'),
|
14 |
+
neck=dict(
|
15 |
+
type='mmdet.FPN',
|
16 |
+
in_channels=[256, 512, 1024, 2048],
|
17 |
+
out_channels=256,
|
18 |
+
num_outs=5),
|
19 |
+
rpn_head=dict(
|
20 |
+
type='RPNHead',
|
21 |
+
in_channels=256,
|
22 |
+
feat_channels=256,
|
23 |
+
anchor_generator=dict(
|
24 |
+
type='AnchorGenerator',
|
25 |
+
scales=[4],
|
26 |
+
ratios=[0.17, 0.44, 1.13, 2.90, 7.46],
|
27 |
+
strides=[4, 8, 16, 32, 64]),
|
28 |
+
bbox_coder=dict(
|
29 |
+
type='DeltaXYWHBBoxCoder',
|
30 |
+
target_means=[.0, .0, .0, .0],
|
31 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
32 |
+
loss_cls=dict(
|
33 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
34 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
35 |
+
roi_head=dict(
|
36 |
+
type='StandardRoIHead',
|
37 |
+
bbox_roi_extractor=dict(
|
38 |
+
type='SingleRoIExtractor',
|
39 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
40 |
+
out_channels=256,
|
41 |
+
featmap_strides=[4, 8, 16, 32]),
|
42 |
+
bbox_head=dict(
|
43 |
+
type='Shared2FCBBoxHead',
|
44 |
+
in_channels=256,
|
45 |
+
fc_out_channels=1024,
|
46 |
+
roi_feat_size=7,
|
47 |
+
num_classes=1,
|
48 |
+
bbox_coder=dict(
|
49 |
+
type='DeltaXYWHBBoxCoder',
|
50 |
+
target_means=[0., 0., 0., 0.],
|
51 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
52 |
+
reg_class_agnostic=False,
|
53 |
+
loss_cls=dict(
|
54 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
55 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
56 |
+
mask_roi_extractor=dict(
|
57 |
+
type='SingleRoIExtractor',
|
58 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
59 |
+
out_channels=256,
|
60 |
+
featmap_strides=[4, 8, 16, 32]),
|
61 |
+
mask_head=dict(
|
62 |
+
type='FCNMaskHead',
|
63 |
+
num_convs=4,
|
64 |
+
in_channels=256,
|
65 |
+
conv_out_channels=256,
|
66 |
+
num_classes=1,
|
67 |
+
loss_mask=dict(
|
68 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
69 |
+
|
70 |
+
# model training and testing settings
|
71 |
+
train_cfg=dict(
|
72 |
+
rpn=dict(
|
73 |
+
assigner=dict(
|
74 |
+
type='MaxIoUAssigner',
|
75 |
+
pos_iou_thr=0.7,
|
76 |
+
neg_iou_thr=0.3,
|
77 |
+
min_pos_iou=0.3,
|
78 |
+
match_low_quality=True,
|
79 |
+
ignore_iof_thr=-1,
|
80 |
+
gpu_assign_thr=50),
|
81 |
+
sampler=dict(
|
82 |
+
type='RandomSampler',
|
83 |
+
num=256,
|
84 |
+
pos_fraction=0.5,
|
85 |
+
neg_pos_ub=-1,
|
86 |
+
add_gt_as_proposals=False),
|
87 |
+
allowed_border=-1,
|
88 |
+
pos_weight=-1,
|
89 |
+
debug=False),
|
90 |
+
rpn_proposal=dict(
|
91 |
+
nms_across_levels=False,
|
92 |
+
nms_pre=2000,
|
93 |
+
nms_post=1000,
|
94 |
+
max_per_img=1000,
|
95 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
96 |
+
min_bbox_size=0),
|
97 |
+
rcnn=dict(
|
98 |
+
assigner=dict(
|
99 |
+
type='MaxIoUAssigner',
|
100 |
+
pos_iou_thr=0.5,
|
101 |
+
neg_iou_thr=0.5,
|
102 |
+
min_pos_iou=0.5,
|
103 |
+
match_low_quality=True,
|
104 |
+
ignore_iof_thr=-1),
|
105 |
+
sampler=dict(
|
106 |
+
type='OHEMSampler',
|
107 |
+
num=512,
|
108 |
+
pos_fraction=0.25,
|
109 |
+
neg_pos_ub=-1,
|
110 |
+
add_gt_as_proposals=True),
|
111 |
+
mask_size=28,
|
112 |
+
pos_weight=-1,
|
113 |
+
debug=False)),
|
114 |
+
test_cfg=dict(
|
115 |
+
rpn=dict(
|
116 |
+
nms_across_levels=False,
|
117 |
+
nms_pre=1000,
|
118 |
+
nms_post=1000,
|
119 |
+
max_per_img=1000,
|
120 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
121 |
+
min_bbox_size=0),
|
122 |
+
rcnn=dict(
|
123 |
+
score_thr=0.05,
|
124 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
125 |
+
max_per_img=100,
|
126 |
+
mask_thr_binary=0.5)))
|
configs/_base_/det_models/ocr_mask_rcnn_r50_fpn_ohem_poly.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='OCRMaskRCNN',
|
4 |
+
text_repr_type='poly',
|
5 |
+
backbone=dict(
|
6 |
+
type='mmdet.ResNet',
|
7 |
+
depth=50,
|
8 |
+
num_stages=4,
|
9 |
+
out_indices=(0, 1, 2, 3),
|
10 |
+
frozen_stages=1,
|
11 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
12 |
+
norm_eval=True,
|
13 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
|
14 |
+
style='pytorch'),
|
15 |
+
neck=dict(
|
16 |
+
type='mmdet.FPN',
|
17 |
+
in_channels=[256, 512, 1024, 2048],
|
18 |
+
out_channels=256,
|
19 |
+
num_outs=5),
|
20 |
+
rpn_head=dict(
|
21 |
+
type='RPNHead',
|
22 |
+
in_channels=256,
|
23 |
+
feat_channels=256,
|
24 |
+
anchor_generator=dict(
|
25 |
+
type='AnchorGenerator',
|
26 |
+
scales=[4],
|
27 |
+
ratios=[0.17, 0.44, 1.13, 2.90, 7.46],
|
28 |
+
strides=[4, 8, 16, 32, 64]),
|
29 |
+
bbox_coder=dict(
|
30 |
+
type='DeltaXYWHBBoxCoder',
|
31 |
+
target_means=[.0, .0, .0, .0],
|
32 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
33 |
+
loss_cls=dict(
|
34 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
35 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
36 |
+
roi_head=dict(
|
37 |
+
type='StandardRoIHead',
|
38 |
+
bbox_roi_extractor=dict(
|
39 |
+
type='SingleRoIExtractor',
|
40 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sample_num=0),
|
41 |
+
out_channels=256,
|
42 |
+
featmap_strides=[4, 8, 16, 32]),
|
43 |
+
bbox_head=dict(
|
44 |
+
type='Shared2FCBBoxHead',
|
45 |
+
in_channels=256,
|
46 |
+
fc_out_channels=1024,
|
47 |
+
roi_feat_size=7,
|
48 |
+
num_classes=80,
|
49 |
+
bbox_coder=dict(
|
50 |
+
type='DeltaXYWHBBoxCoder',
|
51 |
+
target_means=[0., 0., 0., 0.],
|
52 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
53 |
+
reg_class_agnostic=False,
|
54 |
+
loss_cls=dict(
|
55 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
56 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
57 |
+
mask_roi_extractor=dict(
|
58 |
+
type='SingleRoIExtractor',
|
59 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sample_num=0),
|
60 |
+
out_channels=256,
|
61 |
+
featmap_strides=[4, 8, 16, 32]),
|
62 |
+
mask_head=dict(
|
63 |
+
type='FCNMaskHead',
|
64 |
+
num_convs=4,
|
65 |
+
in_channels=256,
|
66 |
+
conv_out_channels=256,
|
67 |
+
num_classes=80,
|
68 |
+
loss_mask=dict(
|
69 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
70 |
+
# model training and testing settings
|
71 |
+
train_cfg=dict(
|
72 |
+
rpn=dict(
|
73 |
+
assigner=dict(
|
74 |
+
type='MaxIoUAssigner',
|
75 |
+
pos_iou_thr=0.7,
|
76 |
+
neg_iou_thr=0.3,
|
77 |
+
min_pos_iou=0.3,
|
78 |
+
match_low_quality=True,
|
79 |
+
ignore_iof_thr=-1),
|
80 |
+
sampler=dict(
|
81 |
+
type='RandomSampler',
|
82 |
+
num=256,
|
83 |
+
pos_fraction=0.5,
|
84 |
+
neg_pos_ub=-1,
|
85 |
+
add_gt_as_proposals=False),
|
86 |
+
allowed_border=-1,
|
87 |
+
pos_weight=-1,
|
88 |
+
debug=False),
|
89 |
+
rpn_proposal=dict(
|
90 |
+
nms_across_levels=False,
|
91 |
+
nms_pre=2000,
|
92 |
+
nms_post=1000,
|
93 |
+
max_per_img=1000,
|
94 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
95 |
+
min_bbox_size=0),
|
96 |
+
rcnn=dict(
|
97 |
+
assigner=dict(
|
98 |
+
type='MaxIoUAssigner',
|
99 |
+
pos_iou_thr=0.5,
|
100 |
+
neg_iou_thr=0.5,
|
101 |
+
min_pos_iou=0.5,
|
102 |
+
match_low_quality=True,
|
103 |
+
ignore_iof_thr=-1,
|
104 |
+
gpu_assign_thr=50),
|
105 |
+
sampler=dict(
|
106 |
+
type='OHEMSampler',
|
107 |
+
num=512,
|
108 |
+
pos_fraction=0.25,
|
109 |
+
neg_pos_ub=-1,
|
110 |
+
add_gt_as_proposals=True),
|
111 |
+
mask_size=28,
|
112 |
+
pos_weight=-1,
|
113 |
+
debug=False)),
|
114 |
+
test_cfg=dict(
|
115 |
+
rpn=dict(
|
116 |
+
nms_across_levels=False,
|
117 |
+
nms_pre=1000,
|
118 |
+
nms_post=1000,
|
119 |
+
max_per_img=1000,
|
120 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
121 |
+
min_bbox_size=0),
|
122 |
+
rcnn=dict(
|
123 |
+
score_thr=0.05,
|
124 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
125 |
+
max_per_img=100,
|
126 |
+
mask_thr_binary=0.5)))
|
configs/_base_/det_models/panet_r18_fpem_ffm.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_poly = dict(
|
2 |
+
type='PANet',
|
3 |
+
backbone=dict(
|
4 |
+
type='mmdet.ResNet',
|
5 |
+
depth=18,
|
6 |
+
num_stages=4,
|
7 |
+
out_indices=(0, 1, 2, 3),
|
8 |
+
frozen_stages=-1,
|
9 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
10 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
|
11 |
+
norm_eval=True,
|
12 |
+
style='caffe'),
|
13 |
+
neck=dict(type='FPEM_FFM', in_channels=[64, 128, 256, 512]),
|
14 |
+
bbox_head=dict(
|
15 |
+
type='PANHead',
|
16 |
+
in_channels=[128, 128, 128, 128],
|
17 |
+
out_channels=6,
|
18 |
+
loss=dict(type='PANLoss'),
|
19 |
+
postprocessor=dict(type='PANPostprocessor', text_repr_type='poly')),
|
20 |
+
train_cfg=None,
|
21 |
+
test_cfg=None)
|
22 |
+
|
23 |
+
model_quad = dict(
|
24 |
+
type='PANet',
|
25 |
+
backbone=dict(
|
26 |
+
type='mmdet.ResNet',
|
27 |
+
depth=18,
|
28 |
+
num_stages=4,
|
29 |
+
out_indices=(0, 1, 2, 3),
|
30 |
+
frozen_stages=-1,
|
31 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
32 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
|
33 |
+
norm_eval=True,
|
34 |
+
style='caffe'),
|
35 |
+
neck=dict(type='FPEM_FFM', in_channels=[64, 128, 256, 512]),
|
36 |
+
bbox_head=dict(
|
37 |
+
type='PANHead',
|
38 |
+
in_channels=[128, 128, 128, 128],
|
39 |
+
out_channels=6,
|
40 |
+
loss=dict(type='PANLoss'),
|
41 |
+
postprocessor=dict(type='PANPostprocessor', text_repr_type='quad')),
|
42 |
+
train_cfg=None,
|
43 |
+
test_cfg=None)
|
configs/_base_/det_models/panet_r50_fpem_ffm.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
type='PANet',
|
3 |
+
pretrained='torchvision://resnet50',
|
4 |
+
backbone=dict(
|
5 |
+
type='mmdet.ResNet',
|
6 |
+
depth=50,
|
7 |
+
num_stages=4,
|
8 |
+
out_indices=(0, 1, 2, 3),
|
9 |
+
frozen_stages=1,
|
10 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
11 |
+
norm_eval=True,
|
12 |
+
style='caffe'),
|
13 |
+
neck=dict(type='FPEM_FFM', in_channels=[256, 512, 1024, 2048]),
|
14 |
+
bbox_head=dict(
|
15 |
+
type='PANHead',
|
16 |
+
in_channels=[128, 128, 128, 128],
|
17 |
+
out_channels=6,
|
18 |
+
loss=dict(type='PANLoss', speedup_bbox_thr=32),
|
19 |
+
postprocessor=dict(type='PANPostprocessor', text_repr_type='poly')),
|
20 |
+
train_cfg=None,
|
21 |
+
test_cfg=None)
|
configs/_base_/det_models/psenet_r50_fpnf.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_poly = dict(
|
2 |
+
type='PSENet',
|
3 |
+
backbone=dict(
|
4 |
+
type='mmdet.ResNet',
|
5 |
+
depth=50,
|
6 |
+
num_stages=4,
|
7 |
+
out_indices=(0, 1, 2, 3),
|
8 |
+
frozen_stages=-1,
|
9 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
10 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
|
11 |
+
norm_eval=True,
|
12 |
+
style='caffe'),
|
13 |
+
neck=dict(
|
14 |
+
type='FPNF',
|
15 |
+
in_channels=[256, 512, 1024, 2048],
|
16 |
+
out_channels=256,
|
17 |
+
fusion_type='concat'),
|
18 |
+
bbox_head=dict(
|
19 |
+
type='PSEHead',
|
20 |
+
in_channels=[256],
|
21 |
+
out_channels=7,
|
22 |
+
loss=dict(type='PSELoss'),
|
23 |
+
postprocessor=dict(type='PSEPostprocessor', text_repr_type='poly')),
|
24 |
+
train_cfg=None,
|
25 |
+
test_cfg=None)
|
26 |
+
|
27 |
+
model_quad = dict(
|
28 |
+
type='PSENet',
|
29 |
+
backbone=dict(
|
30 |
+
type='mmdet.ResNet',
|
31 |
+
depth=50,
|
32 |
+
num_stages=4,
|
33 |
+
out_indices=(0, 1, 2, 3),
|
34 |
+
frozen_stages=-1,
|
35 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
36 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
|
37 |
+
norm_eval=True,
|
38 |
+
style='caffe'),
|
39 |
+
neck=dict(
|
40 |
+
type='FPNF',
|
41 |
+
in_channels=[256, 512, 1024, 2048],
|
42 |
+
out_channels=256,
|
43 |
+
fusion_type='concat'),
|
44 |
+
bbox_head=dict(
|
45 |
+
type='PSEHead',
|
46 |
+
in_channels=[256],
|
47 |
+
out_channels=7,
|
48 |
+
loss=dict(type='PSELoss'),
|
49 |
+
postprocessor=dict(type='PSEPostprocessor', text_repr_type='quad')),
|
50 |
+
train_cfg=None,
|
51 |
+
test_cfg=None)
|
configs/_base_/det_models/textsnake_r50_fpn_unet.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
type='TextSnake',
|
3 |
+
backbone=dict(
|
4 |
+
type='mmdet.ResNet',
|
5 |
+
depth=50,
|
6 |
+
num_stages=4,
|
7 |
+
out_indices=(0, 1, 2, 3),
|
8 |
+
frozen_stages=-1,
|
9 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
10 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
|
11 |
+
norm_eval=True,
|
12 |
+
style='caffe'),
|
13 |
+
neck=dict(
|
14 |
+
type='FPN_UNet', in_channels=[256, 512, 1024, 2048], out_channels=32),
|
15 |
+
bbox_head=dict(
|
16 |
+
type='TextSnakeHead',
|
17 |
+
in_channels=32,
|
18 |
+
loss=dict(type='TextSnakeLoss'),
|
19 |
+
postprocessor=dict(
|
20 |
+
type='TextSnakePostprocessor', text_repr_type='poly')),
|
21 |
+
train_cfg=None,
|
22 |
+
test_cfg=None)
|
configs/_base_/det_pipelines/dbnet_pipeline.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
img_norm_cfg = dict(
|
2 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
3 |
+
|
4 |
+
train_pipeline_r18 = [
|
5 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
6 |
+
dict(
|
7 |
+
type='LoadTextAnnotations',
|
8 |
+
with_bbox=True,
|
9 |
+
with_mask=True,
|
10 |
+
poly2mask=False),
|
11 |
+
dict(type='ColorJitter', brightness=32.0 / 255, saturation=0.5),
|
12 |
+
dict(type='Normalize', **img_norm_cfg),
|
13 |
+
dict(
|
14 |
+
type='ImgAug',
|
15 |
+
args=[['Fliplr', 0.5],
|
16 |
+
dict(cls='Affine', rotate=[-10, 10]), ['Resize', [0.5, 3.0]]]),
|
17 |
+
dict(type='EastRandomCrop', target_size=(640, 640)),
|
18 |
+
dict(type='DBNetTargets', shrink_ratio=0.4),
|
19 |
+
dict(type='Pad', size_divisor=32),
|
20 |
+
dict(
|
21 |
+
type='CustomFormatBundle',
|
22 |
+
keys=['gt_shrink', 'gt_shrink_mask', 'gt_thr', 'gt_thr_mask'],
|
23 |
+
visualize=dict(flag=False, boundary_key='gt_shrink')),
|
24 |
+
dict(
|
25 |
+
type='Collect',
|
26 |
+
keys=['img', 'gt_shrink', 'gt_shrink_mask', 'gt_thr', 'gt_thr_mask'])
|
27 |
+
]
|
28 |
+
|
29 |
+
test_pipeline_1333_736 = [
|
30 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
31 |
+
dict(
|
32 |
+
type='MultiScaleFlipAug',
|
33 |
+
img_scale=(1333, 736), # used by Resize
|
34 |
+
flip=False,
|
35 |
+
transforms=[
|
36 |
+
dict(type='Resize', keep_ratio=True),
|
37 |
+
dict(type='Normalize', **img_norm_cfg),
|
38 |
+
dict(type='Pad', size_divisor=32),
|
39 |
+
dict(type='ImageToTensor', keys=['img']),
|
40 |
+
dict(type='Collect', keys=['img']),
|
41 |
+
])
|
42 |
+
]
|
43 |
+
|
44 |
+
# for dbnet_r50dcnv2_fpnc
|
45 |
+
img_norm_cfg_r50dcnv2 = dict(
|
46 |
+
mean=[122.67891434, 116.66876762, 104.00698793],
|
47 |
+
std=[58.395, 57.12, 57.375],
|
48 |
+
to_rgb=True)
|
49 |
+
|
50 |
+
train_pipeline_r50dcnv2 = [
|
51 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
52 |
+
dict(
|
53 |
+
type='LoadTextAnnotations',
|
54 |
+
with_bbox=True,
|
55 |
+
with_mask=True,
|
56 |
+
poly2mask=False),
|
57 |
+
dict(type='ColorJitter', brightness=32.0 / 255, saturation=0.5),
|
58 |
+
dict(type='Normalize', **img_norm_cfg_r50dcnv2),
|
59 |
+
dict(
|
60 |
+
type='ImgAug',
|
61 |
+
args=[['Fliplr', 0.5],
|
62 |
+
dict(cls='Affine', rotate=[-10, 10]), ['Resize', [0.5, 3.0]]]),
|
63 |
+
dict(type='EastRandomCrop', target_size=(640, 640)),
|
64 |
+
dict(type='DBNetTargets', shrink_ratio=0.4),
|
65 |
+
dict(type='Pad', size_divisor=32),
|
66 |
+
dict(
|
67 |
+
type='CustomFormatBundle',
|
68 |
+
keys=['gt_shrink', 'gt_shrink_mask', 'gt_thr', 'gt_thr_mask'],
|
69 |
+
visualize=dict(flag=False, boundary_key='gt_shrink')),
|
70 |
+
dict(
|
71 |
+
type='Collect',
|
72 |
+
keys=['img', 'gt_shrink', 'gt_shrink_mask', 'gt_thr', 'gt_thr_mask'])
|
73 |
+
]
|
74 |
+
|
75 |
+
test_pipeline_4068_1024 = [
|
76 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
77 |
+
dict(
|
78 |
+
type='MultiScaleFlipAug',
|
79 |
+
img_scale=(4068, 1024), # used by Resize
|
80 |
+
flip=False,
|
81 |
+
transforms=[
|
82 |
+
dict(type='Resize', keep_ratio=True),
|
83 |
+
dict(type='Normalize', **img_norm_cfg_r50dcnv2),
|
84 |
+
dict(type='Pad', size_divisor=32),
|
85 |
+
dict(type='ImageToTensor', keys=['img']),
|
86 |
+
dict(type='Collect', keys=['img']),
|
87 |
+
])
|
88 |
+
]
|
configs/_base_/det_pipelines/drrg_pipeline.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
img_norm_cfg = dict(
|
2 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
3 |
+
|
4 |
+
train_pipeline = [
|
5 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
6 |
+
dict(
|
7 |
+
type='LoadTextAnnotations',
|
8 |
+
with_bbox=True,
|
9 |
+
with_mask=True,
|
10 |
+
poly2mask=False),
|
11 |
+
dict(type='ColorJitter', brightness=32.0 / 255, saturation=0.5),
|
12 |
+
dict(type='Normalize', **img_norm_cfg),
|
13 |
+
dict(type='RandomScaling', size=800, scale=(0.75, 2.5)),
|
14 |
+
dict(
|
15 |
+
type='RandomCropFlip', crop_ratio=0.5, iter_num=1, min_area_ratio=0.2),
|
16 |
+
dict(
|
17 |
+
type='RandomCropPolyInstances',
|
18 |
+
instance_key='gt_masks',
|
19 |
+
crop_ratio=0.8,
|
20 |
+
min_side_ratio=0.3),
|
21 |
+
dict(
|
22 |
+
type='RandomRotatePolyInstances',
|
23 |
+
rotate_ratio=0.5,
|
24 |
+
max_angle=60,
|
25 |
+
pad_with_fixed_color=False),
|
26 |
+
dict(type='SquareResizePad', target_size=800, pad_ratio=0.6),
|
27 |
+
dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
|
28 |
+
dict(type='DRRGTargets'),
|
29 |
+
dict(type='Pad', size_divisor=32),
|
30 |
+
dict(
|
31 |
+
type='CustomFormatBundle',
|
32 |
+
keys=[
|
33 |
+
'gt_text_mask', 'gt_center_region_mask', 'gt_mask',
|
34 |
+
'gt_top_height_map', 'gt_bot_height_map', 'gt_sin_map',
|
35 |
+
'gt_cos_map', 'gt_comp_attribs'
|
36 |
+
],
|
37 |
+
visualize=dict(flag=False, boundary_key='gt_text_mask')),
|
38 |
+
dict(
|
39 |
+
type='Collect',
|
40 |
+
keys=[
|
41 |
+
'img', 'gt_text_mask', 'gt_center_region_mask', 'gt_mask',
|
42 |
+
'gt_top_height_map', 'gt_bot_height_map', 'gt_sin_map',
|
43 |
+
'gt_cos_map', 'gt_comp_attribs'
|
44 |
+
])
|
45 |
+
]
|
46 |
+
|
47 |
+
test_pipeline = [
|
48 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
49 |
+
dict(
|
50 |
+
type='MultiScaleFlipAug',
|
51 |
+
img_scale=(1024, 640), # used by Resize
|
52 |
+
flip=False,
|
53 |
+
transforms=[
|
54 |
+
dict(type='Resize', keep_ratio=True),
|
55 |
+
dict(type='Normalize', **img_norm_cfg),
|
56 |
+
dict(type='Pad', size_divisor=32),
|
57 |
+
dict(type='ImageToTensor', keys=['img']),
|
58 |
+
dict(type='Collect', keys=['img']),
|
59 |
+
])
|
60 |
+
]
|
configs/_base_/det_pipelines/fcenet_pipeline.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
img_norm_cfg = dict(
|
2 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
3 |
+
|
4 |
+
# for icdar2015
|
5 |
+
leval_prop_range_icdar2015 = ((0, 0.4), (0.3, 0.7), (0.6, 1.0))
|
6 |
+
train_pipeline_icdar2015 = [
|
7 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
8 |
+
dict(
|
9 |
+
type='LoadTextAnnotations',
|
10 |
+
with_bbox=True,
|
11 |
+
with_mask=True,
|
12 |
+
poly2mask=False),
|
13 |
+
dict(
|
14 |
+
type='ColorJitter',
|
15 |
+
brightness=32.0 / 255,
|
16 |
+
saturation=0.5,
|
17 |
+
contrast=0.5),
|
18 |
+
dict(type='Normalize', **img_norm_cfg),
|
19 |
+
dict(type='RandomScaling', size=800, scale=(3. / 4, 5. / 2)),
|
20 |
+
dict(
|
21 |
+
type='RandomCropFlip', crop_ratio=0.5, iter_num=1, min_area_ratio=0.2),
|
22 |
+
dict(
|
23 |
+
type='RandomCropPolyInstances',
|
24 |
+
instance_key='gt_masks',
|
25 |
+
crop_ratio=0.8,
|
26 |
+
min_side_ratio=0.3),
|
27 |
+
dict(
|
28 |
+
type='RandomRotatePolyInstances',
|
29 |
+
rotate_ratio=0.5,
|
30 |
+
max_angle=30,
|
31 |
+
pad_with_fixed_color=False),
|
32 |
+
dict(type='SquareResizePad', target_size=800, pad_ratio=0.6),
|
33 |
+
dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
|
34 |
+
dict(type='Pad', size_divisor=32),
|
35 |
+
dict(
|
36 |
+
type='FCENetTargets',
|
37 |
+
fourier_degree=5,
|
38 |
+
level_proportion_range=leval_prop_range_icdar2015),
|
39 |
+
dict(
|
40 |
+
type='CustomFormatBundle',
|
41 |
+
keys=['p3_maps', 'p4_maps', 'p5_maps'],
|
42 |
+
visualize=dict(flag=False, boundary_key=None)),
|
43 |
+
dict(type='Collect', keys=['img', 'p3_maps', 'p4_maps', 'p5_maps'])
|
44 |
+
]
|
45 |
+
|
46 |
+
img_scale_icdar2015 = (2260, 2260)
|
47 |
+
test_pipeline_icdar2015 = [
|
48 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
49 |
+
dict(
|
50 |
+
type='MultiScaleFlipAug',
|
51 |
+
img_scale=img_scale_icdar2015, # used by Resize
|
52 |
+
flip=False,
|
53 |
+
transforms=[
|
54 |
+
dict(type='Resize', keep_ratio=True),
|
55 |
+
dict(type='Normalize', **img_norm_cfg),
|
56 |
+
dict(type='Pad', size_divisor=32),
|
57 |
+
dict(type='ImageToTensor', keys=['img']),
|
58 |
+
dict(type='Collect', keys=['img']),
|
59 |
+
])
|
60 |
+
]
|
61 |
+
|
62 |
+
# for ctw1500
|
63 |
+
leval_prop_range_ctw1500 = ((0, 0.25), (0.2, 0.65), (0.55, 1.0))
|
64 |
+
train_pipeline_ctw1500 = [
|
65 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
66 |
+
dict(
|
67 |
+
type='LoadTextAnnotations',
|
68 |
+
with_bbox=True,
|
69 |
+
with_mask=True,
|
70 |
+
poly2mask=False),
|
71 |
+
dict(
|
72 |
+
type='ColorJitter',
|
73 |
+
brightness=32.0 / 255,
|
74 |
+
saturation=0.5,
|
75 |
+
contrast=0.5),
|
76 |
+
dict(type='Normalize', **img_norm_cfg),
|
77 |
+
dict(type='RandomScaling', size=800, scale=(3. / 4, 5. / 2)),
|
78 |
+
dict(
|
79 |
+
type='RandomCropFlip', crop_ratio=0.5, iter_num=1, min_area_ratio=0.2),
|
80 |
+
dict(
|
81 |
+
type='RandomCropPolyInstances',
|
82 |
+
instance_key='gt_masks',
|
83 |
+
crop_ratio=0.8,
|
84 |
+
min_side_ratio=0.3),
|
85 |
+
dict(
|
86 |
+
type='RandomRotatePolyInstances',
|
87 |
+
rotate_ratio=0.5,
|
88 |
+
max_angle=30,
|
89 |
+
pad_with_fixed_color=False),
|
90 |
+
dict(type='SquareResizePad', target_size=800, pad_ratio=0.6),
|
91 |
+
dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
|
92 |
+
dict(type='Pad', size_divisor=32),
|
93 |
+
dict(
|
94 |
+
type='FCENetTargets',
|
95 |
+
fourier_degree=5,
|
96 |
+
level_proportion_range=leval_prop_range_ctw1500),
|
97 |
+
dict(
|
98 |
+
type='CustomFormatBundle',
|
99 |
+
keys=['p3_maps', 'p4_maps', 'p5_maps'],
|
100 |
+
visualize=dict(flag=False, boundary_key=None)),
|
101 |
+
dict(type='Collect', keys=['img', 'p3_maps', 'p4_maps', 'p5_maps'])
|
102 |
+
]
|
103 |
+
|
104 |
+
img_scale_ctw1500 = (1080, 736)
|
105 |
+
test_pipeline_ctw1500 = [
|
106 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
107 |
+
dict(
|
108 |
+
type='MultiScaleFlipAug',
|
109 |
+
img_scale=img_scale_ctw1500, # used by Resize
|
110 |
+
flip=False,
|
111 |
+
transforms=[
|
112 |
+
dict(type='Resize', keep_ratio=True),
|
113 |
+
dict(type='Normalize', **img_norm_cfg),
|
114 |
+
dict(type='Pad', size_divisor=32),
|
115 |
+
dict(type='ImageToTensor', keys=['img']),
|
116 |
+
dict(type='Collect', keys=['img']),
|
117 |
+
])
|
118 |
+
]
|
configs/_base_/det_pipelines/maskrcnn_pipeline.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
img_norm_cfg = dict(
|
2 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
3 |
+
|
4 |
+
train_pipeline = [
|
5 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
6 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
7 |
+
dict(
|
8 |
+
type='ScaleAspectJitter',
|
9 |
+
img_scale=None,
|
10 |
+
keep_ratio=False,
|
11 |
+
resize_type='indep_sample_in_range',
|
12 |
+
scale_range=(640, 2560)),
|
13 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
14 |
+
dict(type='Normalize', **img_norm_cfg),
|
15 |
+
dict(
|
16 |
+
type='RandomCropInstances',
|
17 |
+
target_size=(640, 640),
|
18 |
+
mask_type='union_all',
|
19 |
+
instance_key='gt_masks'),
|
20 |
+
dict(type='Pad', size_divisor=32),
|
21 |
+
dict(type='DefaultFormatBundle'),
|
22 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
|
23 |
+
]
|
24 |
+
|
25 |
+
# for ctw1500
|
26 |
+
img_scale_ctw1500 = (1600, 1600)
|
27 |
+
test_pipeline_ctw1500 = [
|
28 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
29 |
+
dict(
|
30 |
+
type='MultiScaleFlipAug',
|
31 |
+
img_scale=img_scale_ctw1500, # used by Resize
|
32 |
+
flip=False,
|
33 |
+
transforms=[
|
34 |
+
dict(type='Resize', keep_ratio=True),
|
35 |
+
dict(type='RandomFlip'),
|
36 |
+
dict(type='Normalize', **img_norm_cfg),
|
37 |
+
dict(type='ImageToTensor', keys=['img']),
|
38 |
+
dict(type='Collect', keys=['img']),
|
39 |
+
])
|
40 |
+
]
|
41 |
+
|
42 |
+
# for icdar2015
|
43 |
+
img_scale_icdar2015 = (1920, 1920)
|
44 |
+
test_pipeline_icdar2015 = [
|
45 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
46 |
+
dict(
|
47 |
+
type='MultiScaleFlipAug',
|
48 |
+
img_scale=img_scale_icdar2015, # used by Resize
|
49 |
+
flip=False,
|
50 |
+
transforms=[
|
51 |
+
dict(type='Resize', keep_ratio=True),
|
52 |
+
dict(type='RandomFlip'),
|
53 |
+
dict(type='Normalize', **img_norm_cfg),
|
54 |
+
dict(type='ImageToTensor', keys=['img']),
|
55 |
+
dict(type='Collect', keys=['img']),
|
56 |
+
])
|
57 |
+
]
|
configs/_base_/det_pipelines/panet_pipeline.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
img_norm_cfg = dict(
|
2 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
3 |
+
|
4 |
+
# for ctw1500
|
5 |
+
img_scale_train_ctw1500 = [(3000, 640)]
|
6 |
+
shrink_ratio_train_ctw1500 = (1.0, 0.7)
|
7 |
+
target_size_train_ctw1500 = (640, 640)
|
8 |
+
train_pipeline_ctw1500 = [
|
9 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
10 |
+
dict(
|
11 |
+
type='LoadTextAnnotations',
|
12 |
+
with_bbox=True,
|
13 |
+
with_mask=True,
|
14 |
+
poly2mask=False),
|
15 |
+
dict(type='ColorJitter', brightness=32.0 / 255, saturation=0.5),
|
16 |
+
dict(type='Normalize', **img_norm_cfg),
|
17 |
+
dict(
|
18 |
+
type='ScaleAspectJitter',
|
19 |
+
img_scale=img_scale_train_ctw1500,
|
20 |
+
ratio_range=(0.7, 1.3),
|
21 |
+
aspect_ratio_range=(0.9, 1.1),
|
22 |
+
multiscale_mode='value',
|
23 |
+
keep_ratio=False),
|
24 |
+
# shrink_ratio is from big to small. The 1st must be 1.0
|
25 |
+
dict(type='PANetTargets', shrink_ratio=shrink_ratio_train_ctw1500),
|
26 |
+
dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
|
27 |
+
dict(type='RandomRotateTextDet'),
|
28 |
+
dict(
|
29 |
+
type='RandomCropInstances',
|
30 |
+
target_size=target_size_train_ctw1500,
|
31 |
+
instance_key='gt_kernels'),
|
32 |
+
dict(type='Pad', size_divisor=32),
|
33 |
+
dict(
|
34 |
+
type='CustomFormatBundle',
|
35 |
+
keys=['gt_kernels', 'gt_mask'],
|
36 |
+
visualize=dict(flag=False, boundary_key='gt_kernels')),
|
37 |
+
dict(type='Collect', keys=['img', 'gt_kernels', 'gt_mask'])
|
38 |
+
]
|
39 |
+
|
40 |
+
img_scale_test_ctw1500 = (3000, 640)
|
41 |
+
test_pipeline_ctw1500 = [
|
42 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
43 |
+
dict(
|
44 |
+
type='MultiScaleFlipAug',
|
45 |
+
img_scale=img_scale_test_ctw1500, # used by Resize
|
46 |
+
flip=False,
|
47 |
+
transforms=[
|
48 |
+
dict(type='Resize', keep_ratio=True),
|
49 |
+
dict(type='Normalize', **img_norm_cfg),
|
50 |
+
dict(type='Pad', size_divisor=32),
|
51 |
+
dict(type='ImageToTensor', keys=['img']),
|
52 |
+
dict(type='Collect', keys=['img']),
|
53 |
+
])
|
54 |
+
]
|
55 |
+
|
56 |
+
# for icdar2015
|
57 |
+
img_scale_train_icdar2015 = [(3000, 736)]
|
58 |
+
shrink_ratio_train_icdar2015 = (1.0, 0.5)
|
59 |
+
target_size_train_icdar2015 = (736, 736)
|
60 |
+
train_pipeline_icdar2015 = [
|
61 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
62 |
+
dict(
|
63 |
+
type='LoadTextAnnotations',
|
64 |
+
with_bbox=True,
|
65 |
+
with_mask=True,
|
66 |
+
poly2mask=False),
|
67 |
+
dict(type='ColorJitter', brightness=32.0 / 255, saturation=0.5),
|
68 |
+
dict(type='Normalize', **img_norm_cfg),
|
69 |
+
dict(
|
70 |
+
type='ScaleAspectJitter',
|
71 |
+
img_scale=img_scale_train_icdar2015,
|
72 |
+
ratio_range=(0.7, 1.3),
|
73 |
+
aspect_ratio_range=(0.9, 1.1),
|
74 |
+
multiscale_mode='value',
|
75 |
+
keep_ratio=False),
|
76 |
+
dict(type='PANetTargets', shrink_ratio=shrink_ratio_train_icdar2015),
|
77 |
+
dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
|
78 |
+
dict(type='RandomRotateTextDet'),
|
79 |
+
dict(
|
80 |
+
type='RandomCropInstances',
|
81 |
+
target_size=target_size_train_icdar2015,
|
82 |
+
instance_key='gt_kernels'),
|
83 |
+
dict(type='Pad', size_divisor=32),
|
84 |
+
dict(
|
85 |
+
type='CustomFormatBundle',
|
86 |
+
keys=['gt_kernels', 'gt_mask'],
|
87 |
+
visualize=dict(flag=False, boundary_key='gt_kernels')),
|
88 |
+
dict(type='Collect', keys=['img', 'gt_kernels', 'gt_mask'])
|
89 |
+
]
|
90 |
+
|
91 |
+
img_scale_test_icdar2015 = (1333, 736)
|
92 |
+
test_pipeline_icdar2015 = [
|
93 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
94 |
+
dict(
|
95 |
+
type='MultiScaleFlipAug',
|
96 |
+
img_scale=img_scale_test_icdar2015, # used by Resize
|
97 |
+
flip=False,
|
98 |
+
transforms=[
|
99 |
+
dict(type='Resize', keep_ratio=True),
|
100 |
+
dict(type='Normalize', **img_norm_cfg),
|
101 |
+
dict(type='Pad', size_divisor=32),
|
102 |
+
dict(type='ImageToTensor', keys=['img']),
|
103 |
+
dict(type='Collect', keys=['img']),
|
104 |
+
])
|
105 |
+
]
|
106 |
+
|
107 |
+
# for icdar2017
|
108 |
+
img_scale_train_icdar2017 = [(3000, 800)]
|
109 |
+
shrink_ratio_train_icdar2017 = (1.0, 0.5)
|
110 |
+
target_size_train_icdar2017 = (800, 800)
|
111 |
+
train_pipeline_icdar2017 = [
|
112 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
113 |
+
dict(
|
114 |
+
type='LoadTextAnnotations',
|
115 |
+
with_bbox=True,
|
116 |
+
with_mask=True,
|
117 |
+
poly2mask=False),
|
118 |
+
dict(type='ColorJitter', brightness=32.0 / 255, saturation=0.5),
|
119 |
+
dict(type='Normalize', **img_norm_cfg),
|
120 |
+
dict(
|
121 |
+
type='ScaleAspectJitter',
|
122 |
+
img_scale=img_scale_train_icdar2017,
|
123 |
+
ratio_range=(0.7, 1.3),
|
124 |
+
aspect_ratio_range=(0.9, 1.1),
|
125 |
+
multiscale_mode='value',
|
126 |
+
keep_ratio=False),
|
127 |
+
dict(type='PANetTargets', shrink_ratio=shrink_ratio_train_icdar2017),
|
128 |
+
dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
|
129 |
+
dict(type='RandomRotateTextDet'),
|
130 |
+
dict(
|
131 |
+
type='RandomCropInstances',
|
132 |
+
target_size=target_size_train_icdar2017,
|
133 |
+
instance_key='gt_kernels'),
|
134 |
+
dict(type='Pad', size_divisor=32),
|
135 |
+
dict(
|
136 |
+
type='CustomFormatBundle',
|
137 |
+
keys=['gt_kernels', 'gt_mask'],
|
138 |
+
visualize=dict(flag=False, boundary_key='gt_kernels')),
|
139 |
+
dict(type='Collect', keys=['img', 'gt_kernels', 'gt_mask'])
|
140 |
+
]
|
141 |
+
|
142 |
+
img_scale_test_icdar2017 = (1333, 800)
|
143 |
+
test_pipeline_icdar2017 = [
|
144 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
145 |
+
dict(
|
146 |
+
type='MultiScaleFlipAug',
|
147 |
+
img_scale=img_scale_test_icdar2017, # used by Resize
|
148 |
+
flip=False,
|
149 |
+
transforms=[
|
150 |
+
dict(type='Resize', keep_ratio=True),
|
151 |
+
dict(type='Normalize', **img_norm_cfg),
|
152 |
+
dict(type='Pad', size_divisor=32),
|
153 |
+
dict(type='ImageToTensor', keys=['img']),
|
154 |
+
dict(type='Collect', keys=['img']),
|
155 |
+
])
|
156 |
+
]
|
configs/_base_/det_pipelines/psenet_pipeline.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
img_norm_cfg = dict(
|
2 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
3 |
+
|
4 |
+
train_pipeline = [
|
5 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
6 |
+
dict(
|
7 |
+
type='LoadTextAnnotations',
|
8 |
+
with_bbox=True,
|
9 |
+
with_mask=True,
|
10 |
+
poly2mask=False),
|
11 |
+
dict(type='ColorJitter', brightness=32.0 / 255, saturation=0.5),
|
12 |
+
dict(type='Normalize', **img_norm_cfg),
|
13 |
+
dict(
|
14 |
+
type='ScaleAspectJitter',
|
15 |
+
img_scale=[(3000, 736)],
|
16 |
+
ratio_range=(0.5, 3),
|
17 |
+
aspect_ratio_range=(1, 1),
|
18 |
+
multiscale_mode='value',
|
19 |
+
long_size_bound=1280,
|
20 |
+
short_size_bound=640,
|
21 |
+
resize_type='long_short_bound',
|
22 |
+
keep_ratio=False),
|
23 |
+
dict(type='PSENetTargets'),
|
24 |
+
dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
|
25 |
+
dict(type='RandomRotateTextDet'),
|
26 |
+
dict(
|
27 |
+
type='RandomCropInstances',
|
28 |
+
target_size=(640, 640),
|
29 |
+
instance_key='gt_kernels'),
|
30 |
+
dict(type='Pad', size_divisor=32),
|
31 |
+
dict(
|
32 |
+
type='CustomFormatBundle',
|
33 |
+
keys=['gt_kernels', 'gt_mask'],
|
34 |
+
visualize=dict(flag=False, boundary_key='gt_kernels')),
|
35 |
+
dict(type='Collect', keys=['img', 'gt_kernels', 'gt_mask'])
|
36 |
+
]
|
37 |
+
|
38 |
+
# for ctw1500
|
39 |
+
img_scale_test_ctw1500 = (1280, 1280)
|
40 |
+
test_pipeline_ctw1500 = [
|
41 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
42 |
+
dict(
|
43 |
+
type='MultiScaleFlipAug',
|
44 |
+
img_scale=img_scale_test_ctw1500, # used by Resize
|
45 |
+
flip=False,
|
46 |
+
transforms=[
|
47 |
+
dict(type='Resize', keep_ratio=True),
|
48 |
+
dict(type='Normalize', **img_norm_cfg),
|
49 |
+
dict(type='Pad', size_divisor=32),
|
50 |
+
dict(type='ImageToTensor', keys=['img']),
|
51 |
+
dict(type='Collect', keys=['img']),
|
52 |
+
])
|
53 |
+
]
|
54 |
+
|
55 |
+
# for icdar2015
|
56 |
+
img_scale_test_icdar2015 = (2240, 2240)
|
57 |
+
test_pipeline_icdar2015 = [
|
58 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
59 |
+
dict(
|
60 |
+
type='MultiScaleFlipAug',
|
61 |
+
img_scale=img_scale_test_icdar2015, # used by Resize
|
62 |
+
flip=False,
|
63 |
+
transforms=[
|
64 |
+
dict(type='Resize', keep_ratio=True),
|
65 |
+
dict(type='Normalize', **img_norm_cfg),
|
66 |
+
dict(type='Pad', size_divisor=32),
|
67 |
+
dict(type='ImageToTensor', keys=['img']),
|
68 |
+
dict(type='Collect', keys=['img']),
|
69 |
+
])
|
70 |
+
]
|
configs/_base_/det_pipelines/textsnake_pipeline.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
img_norm_cfg = dict(
|
2 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
3 |
+
|
4 |
+
train_pipeline = [
|
5 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
6 |
+
dict(
|
7 |
+
type='LoadTextAnnotations',
|
8 |
+
with_bbox=True,
|
9 |
+
with_mask=True,
|
10 |
+
poly2mask=False),
|
11 |
+
dict(type='ColorJitter', brightness=32.0 / 255, saturation=0.5),
|
12 |
+
dict(type='Normalize', **img_norm_cfg),
|
13 |
+
dict(
|
14 |
+
type='RandomCropPolyInstances',
|
15 |
+
instance_key='gt_masks',
|
16 |
+
crop_ratio=0.65,
|
17 |
+
min_side_ratio=0.3),
|
18 |
+
dict(
|
19 |
+
type='RandomRotatePolyInstances',
|
20 |
+
rotate_ratio=0.5,
|
21 |
+
max_angle=20,
|
22 |
+
pad_with_fixed_color=False),
|
23 |
+
dict(
|
24 |
+
type='ScaleAspectJitter',
|
25 |
+
img_scale=[(3000, 736)], # unused
|
26 |
+
ratio_range=(0.7, 1.3),
|
27 |
+
aspect_ratio_range=(0.9, 1.1),
|
28 |
+
multiscale_mode='value',
|
29 |
+
long_size_bound=800,
|
30 |
+
short_size_bound=480,
|
31 |
+
resize_type='long_short_bound',
|
32 |
+
keep_ratio=False),
|
33 |
+
dict(type='SquareResizePad', target_size=800, pad_ratio=0.6),
|
34 |
+
dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
|
35 |
+
dict(type='TextSnakeTargets'),
|
36 |
+
dict(type='Pad', size_divisor=32),
|
37 |
+
dict(
|
38 |
+
type='CustomFormatBundle',
|
39 |
+
keys=[
|
40 |
+
'gt_text_mask', 'gt_center_region_mask', 'gt_mask',
|
41 |
+
'gt_radius_map', 'gt_sin_map', 'gt_cos_map'
|
42 |
+
],
|
43 |
+
visualize=dict(flag=False, boundary_key='gt_text_mask')),
|
44 |
+
dict(
|
45 |
+
type='Collect',
|
46 |
+
keys=[
|
47 |
+
'img', 'gt_text_mask', 'gt_center_region_mask', 'gt_mask',
|
48 |
+
'gt_radius_map', 'gt_sin_map', 'gt_cos_map'
|
49 |
+
])
|
50 |
+
]
|
51 |
+
|
52 |
+
test_pipeline = [
|
53 |
+
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
54 |
+
dict(
|
55 |
+
type='MultiScaleFlipAug',
|
56 |
+
img_scale=(1333, 736), # used by Resize
|
57 |
+
flip=False,
|
58 |
+
transforms=[
|
59 |
+
dict(type='Resize', keep_ratio=True),
|
60 |
+
dict(type='Normalize', **img_norm_cfg),
|
61 |
+
dict(type='Pad', size_divisor=32),
|
62 |
+
dict(type='ImageToTensor', keys=['img']),
|
63 |
+
dict(type='Collect', keys=['img']),
|
64 |
+
])
|
65 |
+
]
|
configs/_base_/recog_datasets/MJ_train.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Text Recognition Training set, including:
|
2 |
+
# Synthetic Datasets: Syn90k
|
3 |
+
|
4 |
+
train_root = 'data/mixture/Syn90k'
|
5 |
+
|
6 |
+
train_img_prefix = f'{train_root}/mnt/ramdisk/max/90kDICT32px'
|
7 |
+
train_ann_file = f'{train_root}/label.lmdb'
|
8 |
+
|
9 |
+
train = dict(
|
10 |
+
type='OCRDataset',
|
11 |
+
img_prefix=train_img_prefix,
|
12 |
+
ann_file=train_ann_file,
|
13 |
+
loader=dict(
|
14 |
+
type='AnnFileLoader',
|
15 |
+
repeat=1,
|
16 |
+
file_format='lmdb',
|
17 |
+
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
|
18 |
+
pipeline=None,
|
19 |
+
test_mode=False)
|
20 |
+
|
21 |
+
train_list = [train]
|
configs/_base_/recog_datasets/ST_MJ_alphanumeric_train.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Text Recognition Training set, including:
|
2 |
+
# Synthetic Datasets: SynthText, Syn90k
|
3 |
+
# Both annotations are filtered so that
|
4 |
+
# only alphanumeric terms are left
|
5 |
+
|
6 |
+
train_root = 'data/mixture'
|
7 |
+
|
8 |
+
train_img_prefix1 = f'{train_root}/Syn90k/mnt/ramdisk/max/90kDICT32px'
|
9 |
+
train_ann_file1 = f'{train_root}/Syn90k/label.lmdb'
|
10 |
+
|
11 |
+
train1 = dict(
|
12 |
+
type='OCRDataset',
|
13 |
+
img_prefix=train_img_prefix1,
|
14 |
+
ann_file=train_ann_file1,
|
15 |
+
loader=dict(
|
16 |
+
type='AnnFileLoader',
|
17 |
+
repeat=1,
|
18 |
+
file_format='lmdb',
|
19 |
+
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
|
20 |
+
pipeline=None,
|
21 |
+
test_mode=False)
|
22 |
+
|
23 |
+
train_img_prefix2 = f'{train_root}/SynthText/' + \
|
24 |
+
'synthtext/SynthText_patch_horizontal'
|
25 |
+
train_ann_file2 = f'{train_root}/SynthText/alphanumeric_label.lmdb'
|
26 |
+
|
27 |
+
train2 = {key: value for key, value in train1.items()}
|
28 |
+
train2['img_prefix'] = train_img_prefix2
|
29 |
+
train2['ann_file'] = train_ann_file2
|
30 |
+
|
31 |
+
train_list = [train1, train2]
|
configs/_base_/recog_datasets/ST_MJ_train.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Text Recognition Training set, including:
|
2 |
+
# Synthetic Datasets: SynthText, Syn90k
|
3 |
+
|
4 |
+
train_root = 'data/mixture'
|
5 |
+
|
6 |
+
train_img_prefix1 = f'{train_root}/Syn90k/mnt/ramdisk/max/90kDICT32px'
|
7 |
+
train_ann_file1 = f'{train_root}/Syn90k/label.lmdb'
|
8 |
+
|
9 |
+
train1 = dict(
|
10 |
+
type='OCRDataset',
|
11 |
+
img_prefix=train_img_prefix1,
|
12 |
+
ann_file=train_ann_file1,
|
13 |
+
loader=dict(
|
14 |
+
type='AnnFileLoader',
|
15 |
+
repeat=1,
|
16 |
+
file_format='lmdb',
|
17 |
+
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
|
18 |
+
pipeline=None,
|
19 |
+
test_mode=False)
|
20 |
+
|
21 |
+
train_img_prefix2 = f'{train_root}/SynthText/' + \
|
22 |
+
'synthtext/SynthText_patch_horizontal'
|
23 |
+
train_ann_file2 = f'{train_root}/SynthText/label.lmdb'
|
24 |
+
|
25 |
+
train2 = {key: value for key, value in train1.items()}
|
26 |
+
train2['img_prefix'] = train_img_prefix2
|
27 |
+
train2['ann_file'] = train_ann_file2
|
28 |
+
|
29 |
+
train_list = [train1, train2]
|
configs/_base_/recog_datasets/ST_SA_MJ_real_train.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Text Recognition Training set, including:
|
2 |
+
# Synthetic Datasets: SynthText, SynthAdd, Syn90k
|
3 |
+
# Real Dataset: IC11, IC13, IC15, COCO-Test, IIIT5k
|
4 |
+
|
5 |
+
train_prefix = 'data/mixture'
|
6 |
+
|
7 |
+
train_img_prefix1 = f'{train_prefix}/icdar_2011'
|
8 |
+
train_img_prefix2 = f'{train_prefix}/icdar_2013'
|
9 |
+
train_img_prefix3 = f'{train_prefix}/icdar_2015'
|
10 |
+
train_img_prefix4 = f'{train_prefix}/coco_text'
|
11 |
+
train_img_prefix5 = f'{train_prefix}/IIIT5K'
|
12 |
+
train_img_prefix6 = f'{train_prefix}/SynthText_Add'
|
13 |
+
train_img_prefix7 = f'{train_prefix}/SynthText'
|
14 |
+
train_img_prefix8 = f'{train_prefix}/Syn90k'
|
15 |
+
|
16 |
+
train_ann_file1 = f'{train_prefix}/icdar_2011/train_label.txt',
|
17 |
+
train_ann_file2 = f'{train_prefix}/icdar_2013/train_label.txt',
|
18 |
+
train_ann_file3 = f'{train_prefix}/icdar_2015/train_label.txt',
|
19 |
+
train_ann_file4 = f'{train_prefix}/coco_text/train_label.txt',
|
20 |
+
train_ann_file5 = f'{train_prefix}/IIIT5K/train_label.txt',
|
21 |
+
train_ann_file6 = f'{train_prefix}/SynthText_Add/label.txt',
|
22 |
+
train_ann_file7 = f'{train_prefix}/SynthText/shuffle_labels.txt',
|
23 |
+
train_ann_file8 = f'{train_prefix}/Syn90k/shuffle_labels.txt'
|
24 |
+
|
25 |
+
train1 = dict(
|
26 |
+
type='OCRDataset',
|
27 |
+
img_prefix=train_img_prefix1,
|
28 |
+
ann_file=train_ann_file1,
|
29 |
+
loader=dict(
|
30 |
+
type='AnnFileLoader',
|
31 |
+
repeat=20,
|
32 |
+
file_format='txt',
|
33 |
+
parser=dict(
|
34 |
+
type='LineStrParser',
|
35 |
+
keys=['filename', 'text'],
|
36 |
+
keys_idx=[0, 1],
|
37 |
+
separator=' ')),
|
38 |
+
pipeline=None,
|
39 |
+
test_mode=False)
|
40 |
+
|
41 |
+
train2 = {key: value for key, value in train1.items()}
|
42 |
+
train2['img_prefix'] = train_img_prefix2
|
43 |
+
train2['ann_file'] = train_ann_file2
|
44 |
+
|
45 |
+
train3 = {key: value for key, value in train1.items()}
|
46 |
+
train3['img_prefix'] = train_img_prefix3
|
47 |
+
train3['ann_file'] = train_ann_file3
|
48 |
+
|
49 |
+
train4 = {key: value for key, value in train1.items()}
|
50 |
+
train4['img_prefix'] = train_img_prefix4
|
51 |
+
train4['ann_file'] = train_ann_file4
|
52 |
+
|
53 |
+
train5 = {key: value for key, value in train1.items()}
|
54 |
+
train5['img_prefix'] = train_img_prefix5
|
55 |
+
train5['ann_file'] = train_ann_file5
|
56 |
+
|
57 |
+
train6 = dict(
|
58 |
+
type='OCRDataset',
|
59 |
+
img_prefix=train_img_prefix6,
|
60 |
+
ann_file=train_ann_file6,
|
61 |
+
loader=dict(
|
62 |
+
type='AnnFileLoader',
|
63 |
+
repeat=1,
|
64 |
+
file_format='txt',
|
65 |
+
parser=dict(
|
66 |
+
type='LineStrParser',
|
67 |
+
keys=['filename', 'text'],
|
68 |
+
keys_idx=[0, 1],
|
69 |
+
separator=' ')),
|
70 |
+
pipeline=None,
|
71 |
+
test_mode=False)
|
72 |
+
|
73 |
+
train7 = {key: value for key, value in train6.items()}
|
74 |
+
train7['img_prefix'] = train_img_prefix7
|
75 |
+
train7['ann_file'] = train_ann_file7
|
76 |
+
|
77 |
+
train8 = {key: value for key, value in train6.items()}
|
78 |
+
train8['img_prefix'] = train_img_prefix8
|
79 |
+
train8['ann_file'] = train_ann_file8
|
80 |
+
|
81 |
+
train_list = [train1, train2, train3, train4, train5, train6, train7, train8]
|
configs/_base_/recog_datasets/ST_SA_MJ_train.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Text Recognition Training set, including:
|
2 |
+
# Synthetic Datasets: SynthText, Syn90k
|
3 |
+
|
4 |
+
train_root = 'data/mixture'
|
5 |
+
|
6 |
+
train_img_prefix1 = f'{train_root}/Syn90k/mnt/ramdisk/max/90kDICT32px'
|
7 |
+
train_ann_file1 = f'{train_root}/Syn90k/label.lmdb'
|
8 |
+
|
9 |
+
train1 = dict(
|
10 |
+
type='OCRDataset',
|
11 |
+
img_prefix=train_img_prefix1,
|
12 |
+
ann_file=train_ann_file1,
|
13 |
+
loader=dict(
|
14 |
+
type='AnnFileLoader',
|
15 |
+
repeat=1,
|
16 |
+
file_format='lmdb',
|
17 |
+
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
|
18 |
+
pipeline=None,
|
19 |
+
test_mode=False)
|
20 |
+
|
21 |
+
train_img_prefix2 = f'{train_root}/SynthText/' + \
|
22 |
+
'synthtext/SynthText_patch_horizontal'
|
23 |
+
train_ann_file2 = f'{train_root}/SynthText/label.lmdb'
|
24 |
+
|
25 |
+
train_img_prefix3 = f'{train_root}/SynthText_Add'
|
26 |
+
train_ann_file3 = f'{train_root}/SynthText_Add/label.txt'
|
27 |
+
|
28 |
+
train2 = {key: value for key, value in train1.items()}
|
29 |
+
train2['img_prefix'] = train_img_prefix2
|
30 |
+
train2['ann_file'] = train_ann_file2
|
31 |
+
|
32 |
+
train3 = dict(
|
33 |
+
type='OCRDataset',
|
34 |
+
img_prefix=train_img_prefix3,
|
35 |
+
ann_file=train_ann_file3,
|
36 |
+
loader=dict(
|
37 |
+
type='AnnFileLoader',
|
38 |
+
repeat=1,
|
39 |
+
file_format='txt',
|
40 |
+
parser=dict(
|
41 |
+
type='LineStrParser',
|
42 |
+
keys=['filename', 'text'],
|
43 |
+
keys_idx=[0, 1],
|
44 |
+
separator=' ')),
|
45 |
+
pipeline=None,
|
46 |
+
test_mode=False)
|
47 |
+
|
48 |
+
train_list = [train1, train2, train3]
|
configs/_base_/recog_datasets/ST_charbox_train.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Text Recognition Training set, including:
|
2 |
+
# Synthetic Datasets: SynthText (with character level boxes)
|
3 |
+
|
4 |
+
train_img_root = 'data/mixture'
|
5 |
+
|
6 |
+
train_img_prefix = f'{train_img_root}/SynthText'
|
7 |
+
|
8 |
+
train_ann_file = f'{train_img_root}/SynthText/instances_train.txt'
|
9 |
+
|
10 |
+
train = dict(
|
11 |
+
type='OCRSegDataset',
|
12 |
+
img_prefix=train_img_prefix,
|
13 |
+
ann_file=train_ann_file,
|
14 |
+
loader=dict(
|
15 |
+
type='AnnFileLoader',
|
16 |
+
repeat=1,
|
17 |
+
file_format='txt',
|
18 |
+
parser=dict(
|
19 |
+
type='LineJsonParser', keys=['file_name', 'annotations', 'text'])),
|
20 |
+
pipeline=None,
|
21 |
+
test_mode=False)
|
22 |
+
|
23 |
+
train_list = [train]
|
configs/_base_/recog_datasets/academic_test.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Text Recognition Testing set, including:
|
2 |
+
# Regular Datasets: IIIT5K, SVT, IC13
|
3 |
+
# Irregular Datasets: IC15, SVTP, CT80
|
4 |
+
|
5 |
+
test_root = 'data/mixture'
|
6 |
+
|
7 |
+
test_img_prefix1 = f'{test_root}/IIIT5K/'
|
8 |
+
test_img_prefix2 = f'{test_root}/svt/'
|
9 |
+
test_img_prefix3 = f'{test_root}/icdar_2013/'
|
10 |
+
test_img_prefix4 = f'{test_root}/icdar_2015/'
|
11 |
+
test_img_prefix5 = f'{test_root}/svtp/'
|
12 |
+
test_img_prefix6 = f'{test_root}/ct80/'
|
13 |
+
|
14 |
+
test_ann_file1 = f'{test_root}/IIIT5K/test_label.txt'
|
15 |
+
test_ann_file2 = f'{test_root}/svt/test_label.txt'
|
16 |
+
test_ann_file3 = f'{test_root}/icdar_2013/test_label_1015.txt'
|
17 |
+
test_ann_file4 = f'{test_root}/icdar_2015/test_label.txt'
|
18 |
+
test_ann_file5 = f'{test_root}/svtp/test_label.txt'
|
19 |
+
test_ann_file6 = f'{test_root}/ct80/test_label.txt'
|
20 |
+
|
21 |
+
test1 = dict(
|
22 |
+
type='OCRDataset',
|
23 |
+
img_prefix=test_img_prefix1,
|
24 |
+
ann_file=test_ann_file1,
|
25 |
+
loader=dict(
|
26 |
+
type='AnnFileLoader',
|
27 |
+
repeat=1,
|
28 |
+
file_format='txt',
|
29 |
+
parser=dict(
|
30 |
+
type='LineStrParser',
|
31 |
+
keys=['filename', 'text'],
|
32 |
+
keys_idx=[0, 1],
|
33 |
+
separator=' ')),
|
34 |
+
pipeline=None,
|
35 |
+
test_mode=True)
|
36 |
+
|
37 |
+
test2 = {key: value for key, value in test1.items()}
|
38 |
+
test2['img_prefix'] = test_img_prefix2
|
39 |
+
test2['ann_file'] = test_ann_file2
|
40 |
+
|
41 |
+
test3 = {key: value for key, value in test1.items()}
|
42 |
+
test3['img_prefix'] = test_img_prefix3
|
43 |
+
test3['ann_file'] = test_ann_file3
|
44 |
+
|
45 |
+
test4 = {key: value for key, value in test1.items()}
|
46 |
+
test4['img_prefix'] = test_img_prefix4
|
47 |
+
test4['ann_file'] = test_ann_file4
|
48 |
+
|
49 |
+
test5 = {key: value for key, value in test1.items()}
|
50 |
+
test5['img_prefix'] = test_img_prefix5
|
51 |
+
test5['ann_file'] = test_ann_file5
|
52 |
+
|
53 |
+
test6 = {key: value for key, value in test1.items()}
|
54 |
+
test6['img_prefix'] = test_img_prefix6
|
55 |
+
test6['ann_file'] = test_ann_file6
|
56 |
+
|
57 |
+
test_list = [test1, test2, test3, test4, test5, test6]
|
configs/_base_/recog_datasets/seg_toy_data.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
prefix = 'tests/data/ocr_char_ann_toy_dataset/'
|
2 |
+
|
3 |
+
train = dict(
|
4 |
+
type='OCRSegDataset',
|
5 |
+
img_prefix=f'{prefix}/imgs',
|
6 |
+
ann_file=f'{prefix}/instances_train.txt',
|
7 |
+
loader=dict(
|
8 |
+
type='AnnFileLoader',
|
9 |
+
repeat=100,
|
10 |
+
file_format='txt',
|
11 |
+
parser=dict(
|
12 |
+
type='LineJsonParser', keys=['file_name', 'annotations', 'text'])),
|
13 |
+
pipeline=None,
|
14 |
+
test_mode=True)
|
15 |
+
|
16 |
+
test = dict(
|
17 |
+
type='OCRDataset',
|
18 |
+
img_prefix=f'{prefix}/imgs',
|
19 |
+
ann_file=f'{prefix}/instances_test.txt',
|
20 |
+
loader=dict(
|
21 |
+
type='AnnFileLoader',
|
22 |
+
repeat=1,
|
23 |
+
file_format='txt',
|
24 |
+
parser=dict(
|
25 |
+
type='LineStrParser',
|
26 |
+
keys=['filename', 'text'],
|
27 |
+
keys_idx=[0, 1],
|
28 |
+
separator=' ')),
|
29 |
+
pipeline=None,
|
30 |
+
test_mode=True)
|
31 |
+
|
32 |
+
train_list = [train]
|
33 |
+
|
34 |
+
test_list = [test]
|
configs/_base_/recog_datasets/toy_data.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'OCRDataset'
|
2 |
+
|
3 |
+
root = 'tests/data/ocr_toy_dataset'
|
4 |
+
img_prefix = f'{root}/imgs'
|
5 |
+
train_anno_file1 = f'{root}/label.txt'
|
6 |
+
|
7 |
+
train1 = dict(
|
8 |
+
type=dataset_type,
|
9 |
+
img_prefix=img_prefix,
|
10 |
+
ann_file=train_anno_file1,
|
11 |
+
loader=dict(
|
12 |
+
type='AnnFileLoader',
|
13 |
+
repeat=100,
|
14 |
+
file_format='txt',
|
15 |
+
file_storage_backend='disk',
|
16 |
+
parser=dict(
|
17 |
+
type='LineStrParser',
|
18 |
+
keys=['filename', 'text'],
|
19 |
+
keys_idx=[0, 1],
|
20 |
+
separator=' ')),
|
21 |
+
pipeline=None,
|
22 |
+
test_mode=False)
|
23 |
+
|
24 |
+
train_anno_file2 = f'{root}/label.lmdb'
|
25 |
+
train2 = dict(
|
26 |
+
type=dataset_type,
|
27 |
+
img_prefix=img_prefix,
|
28 |
+
ann_file=train_anno_file2,
|
29 |
+
loader=dict(
|
30 |
+
type='AnnFileLoader',
|
31 |
+
repeat=100,
|
32 |
+
file_format='lmdb',
|
33 |
+
file_storage_backend='disk',
|
34 |
+
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
|
35 |
+
pipeline=None,
|
36 |
+
test_mode=False)
|
37 |
+
|
38 |
+
test_anno_file1 = f'{root}/label.lmdb'
|
39 |
+
test = dict(
|
40 |
+
type=dataset_type,
|
41 |
+
img_prefix=img_prefix,
|
42 |
+
ann_file=test_anno_file1,
|
43 |
+
loader=dict(
|
44 |
+
type='AnnFileLoader',
|
45 |
+
repeat=1,
|
46 |
+
file_format='lmdb',
|
47 |
+
file_storage_backend='disk',
|
48 |
+
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
|
49 |
+
pipeline=None,
|
50 |
+
test_mode=True)
|
51 |
+
|
52 |
+
train_list = [train1, train2]
|
53 |
+
|
54 |
+
test_list = [test]
|
configs/_base_/recog_models/abinet.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# num_chars depends on the configuration of label_convertor. The actual
|
2 |
+
# dictionary size is 36 + 1 (<BOS/EOS>).
|
3 |
+
# TODO: Automatically update num_chars based on the configuration of
|
4 |
+
# label_convertor
|
5 |
+
num_chars = 37
|
6 |
+
max_seq_len = 26
|
7 |
+
|
8 |
+
label_convertor = dict(
|
9 |
+
type='ABIConvertor',
|
10 |
+
dict_type='DICT36',
|
11 |
+
with_unknown=False,
|
12 |
+
with_padding=False,
|
13 |
+
lower=True,
|
14 |
+
)
|
15 |
+
|
16 |
+
model = dict(
|
17 |
+
type='ABINet',
|
18 |
+
backbone=dict(type='ResNetABI'),
|
19 |
+
encoder=dict(
|
20 |
+
type='ABIVisionModel',
|
21 |
+
encoder=dict(
|
22 |
+
type='TransformerEncoder',
|
23 |
+
n_layers=3,
|
24 |
+
n_head=8,
|
25 |
+
d_model=512,
|
26 |
+
d_inner=2048,
|
27 |
+
dropout=0.1,
|
28 |
+
max_len=8 * 32,
|
29 |
+
),
|
30 |
+
decoder=dict(
|
31 |
+
type='ABIVisionDecoder',
|
32 |
+
in_channels=512,
|
33 |
+
num_channels=64,
|
34 |
+
attn_height=8,
|
35 |
+
attn_width=32,
|
36 |
+
attn_mode='nearest',
|
37 |
+
use_result='feature',
|
38 |
+
num_chars=num_chars,
|
39 |
+
max_seq_len=max_seq_len,
|
40 |
+
init_cfg=dict(type='Xavier', layer='Conv2d')),
|
41 |
+
),
|
42 |
+
decoder=dict(
|
43 |
+
type='ABILanguageDecoder',
|
44 |
+
d_model=512,
|
45 |
+
n_head=8,
|
46 |
+
d_inner=2048,
|
47 |
+
n_layers=4,
|
48 |
+
dropout=0.1,
|
49 |
+
detach_tokens=True,
|
50 |
+
use_self_attn=False,
|
51 |
+
pad_idx=num_chars - 1,
|
52 |
+
num_chars=num_chars,
|
53 |
+
max_seq_len=max_seq_len,
|
54 |
+
init_cfg=None),
|
55 |
+
fuser=dict(
|
56 |
+
type='ABIFuser',
|
57 |
+
d_model=512,
|
58 |
+
num_chars=num_chars,
|
59 |
+
init_cfg=None,
|
60 |
+
max_seq_len=max_seq_len,
|
61 |
+
),
|
62 |
+
loss=dict(
|
63 |
+
type='ABILoss',
|
64 |
+
enc_weight=1.0,
|
65 |
+
dec_weight=1.0,
|
66 |
+
fusion_weight=1.0,
|
67 |
+
num_classes=num_chars),
|
68 |
+
label_convertor=label_convertor,
|
69 |
+
max_seq_len=max_seq_len,
|
70 |
+
iter_size=3)
|
configs/_base_/recog_models/crnn.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
label_convertor = dict(
|
2 |
+
type='CTCConvertor', dict_type='DICT36', with_unknown=False, lower=True)
|
3 |
+
|
4 |
+
model = dict(
|
5 |
+
type='CRNNNet',
|
6 |
+
preprocessor=None,
|
7 |
+
backbone=dict(type='VeryDeepVgg', leaky_relu=False, input_channels=1),
|
8 |
+
encoder=None,
|
9 |
+
decoder=dict(type='CRNNDecoder', in_channels=512, rnn_flag=True),
|
10 |
+
loss=dict(type='CTCLoss'),
|
11 |
+
label_convertor=label_convertor,
|
12 |
+
pretrained=None)
|
configs/_base_/recog_models/crnn_tps.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model
|
2 |
+
label_convertor = dict(
|
3 |
+
type='CTCConvertor', dict_type='DICT36', with_unknown=False, lower=True)
|
4 |
+
|
5 |
+
model = dict(
|
6 |
+
type='CRNNNet',
|
7 |
+
preprocessor=dict(
|
8 |
+
type='TPSPreprocessor',
|
9 |
+
num_fiducial=20,
|
10 |
+
img_size=(32, 100),
|
11 |
+
rectified_img_size=(32, 100),
|
12 |
+
num_img_channel=1),
|
13 |
+
backbone=dict(type='VeryDeepVgg', leaky_relu=False, input_channels=1),
|
14 |
+
encoder=None,
|
15 |
+
decoder=dict(type='CRNNDecoder', in_channels=512, rnn_flag=True),
|
16 |
+
loss=dict(type='CTCLoss'),
|
17 |
+
label_convertor=label_convertor,
|
18 |
+
pretrained=None)
|