Spaces:
Sleeping
Sleeping
Refactor : detection 코드 주석
Browse files
app.py
CHANGED
@@ -9,6 +9,8 @@ import torch
|
|
9 |
import tensorflow as tf
|
10 |
from PIL import ImageDraw
|
11 |
|
|
|
|
|
12 |
# image segmentation 모델
|
13 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
14 |
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
|
@@ -18,12 +20,12 @@ model_segmentation = TFSegformerForSemanticSegmentation.from_pretrained(
|
|
18 |
)
|
19 |
|
20 |
# image detection 모델
|
21 |
-
processor_detection = DetrImageProcessor.from_pretrained(
|
22 |
-
|
23 |
-
)
|
24 |
-
model_detection = DetrForObjectDetection.from_pretrained(
|
25 |
-
|
26 |
-
)
|
27 |
|
28 |
|
29 |
def ade_palette():
|
@@ -100,36 +102,36 @@ def sepia(inputs, button_text):
|
|
100 |
"""객체 검출 또는 세그멘테이션을 수행하고 결과를 반환하는 함수입니다."""
|
101 |
|
102 |
input_img = Image.fromarray(inputs)
|
103 |
-
if button_text == "detection":
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
inputs_segmentation = feature_extractor(images=input_img, return_tensors="tf")
|
134 |
outputs_segmentation = model_segmentation(**inputs_segmentation)
|
135 |
logits_segmentation = outputs_segmentation.logits
|
@@ -155,13 +157,13 @@ def on_button_click(inputs):
|
|
155 |
image_path, selected_option = inputs
|
156 |
if selected_option == "dropout":
|
157 |
# 'dropout'이면 두 가지 중에 하나를 랜덤으로 선택
|
158 |
-
selected_option = np.random.choice(["
|
159 |
|
160 |
return sepia(image_path, selected_option)
|
161 |
|
162 |
# Gr.Dropdown을 사용하여 옵션을 선택할 수 있도록 변경
|
163 |
dropdown = gr.Dropdown(
|
164 |
-
["
|
165 |
)
|
166 |
|
167 |
demo = gr.Interface(
|
@@ -177,4 +179,4 @@ demo = gr.Interface(
|
|
177 |
allow_flagging="never",
|
178 |
)
|
179 |
|
180 |
-
demo.launch(
|
|
|
9 |
import tensorflow as tf
|
10 |
from PIL import ImageDraw
|
11 |
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
# image segmentation 모델
|
15 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
16 |
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
|
|
|
20 |
)
|
21 |
|
22 |
# image detection 모델
|
23 |
+
# processor_detection = DetrImageProcessor.from_pretrained(
|
24 |
+
# "facebook/detr-resnet-50", revision="no_timm"
|
25 |
+
# )
|
26 |
+
# model_detection = DetrForObjectDetection.from_pretrained(
|
27 |
+
# "facebook/detr-resnet-50", revision="no_timm"
|
28 |
+
# )
|
29 |
|
30 |
|
31 |
def ade_palette():
|
|
|
102 |
"""객체 검출 또는 세그멘테이션을 수행하고 결과를 반환하는 함수입니다."""
|
103 |
|
104 |
input_img = Image.fromarray(inputs)
|
105 |
+
# if button_text == "detection":
|
106 |
+
# inputs_detection = processor_detection(images=input_img, return_tensors="pt")
|
107 |
+
# outputs_detection = model_detection(**inputs_detection)
|
108 |
+
|
109 |
+
# target_sizes = torch.tensor([input_img.size[::-1]])
|
110 |
+
# results_detection = processor_detection.post_process_object_detection(
|
111 |
+
# outputs_detection, target_sizes=target_sizes, threshold=0.9
|
112 |
+
# )[0]
|
113 |
+
|
114 |
+
# draw = ImageDraw.Draw(input_img)
|
115 |
+
# for score, label, box in zip(
|
116 |
+
# results_detection["scores"],
|
117 |
+
# results_detection["labels"],
|
118 |
+
# results_detection["boxes"],
|
119 |
+
# ):
|
120 |
+
# box = [round(i, 2) for i in box.tolist()]
|
121 |
+
# label_name = model_detection.config.id2label[label.item()]
|
122 |
+
# print(
|
123 |
+
# f"Detected {label_name} with confidence "
|
124 |
+
# f"{round(score.item(), 3)} at location {box}"
|
125 |
+
# )
|
126 |
+
# draw.rectangle(box, outline="red", width=3)
|
127 |
+
# draw.text((box[0], box[1]), label_name, fill="red", font=None)
|
128 |
+
|
129 |
+
# fig = plt.figure(figsize=(20, 15))
|
130 |
+
# plt.imshow(input_img)
|
131 |
+
# plt.axis("off")
|
132 |
+
# return fig
|
133 |
+
|
134 |
+
if button_text == "segmentation":
|
135 |
inputs_segmentation = feature_extractor(images=input_img, return_tensors="tf")
|
136 |
outputs_segmentation = model_segmentation(**inputs_segmentation)
|
137 |
logits_segmentation = outputs_segmentation.logits
|
|
|
157 |
image_path, selected_option = inputs
|
158 |
if selected_option == "dropout":
|
159 |
# 'dropout'이면 두 가지 중에 하나를 랜덤으로 선택
|
160 |
+
selected_option = np.random.choice(["segmentation"])
|
161 |
|
162 |
return sepia(image_path, selected_option)
|
163 |
|
164 |
# Gr.Dropdown을 사용하여 옵션을 선택할 수 있도록 변경
|
165 |
dropdown = gr.Dropdown(
|
166 |
+
["segmentation"], label="Menu", info="Chose Segmentation!"
|
167 |
)
|
168 |
|
169 |
demo = gr.Interface(
|
|
|
179 |
allow_flagging="never",
|
180 |
)
|
181 |
|
182 |
+
demo.launch()
|