Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ from matplotlib import gridspec
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import numpy as np
|
6 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
7 |
-
from transformers import DetrImageProcessor, DetrForObjectDetection
|
8 |
import torch
|
9 |
import tensorflow as tf
|
10 |
from PIL import ImageDraw
|
@@ -102,34 +101,6 @@ def sepia(inputs, button_text):
|
|
102 |
"""κ°μ²΄ κ²μΆ λλ μΈκ·Έλ©ν
μ΄μ
μ μννκ³ κ²°κ³Όλ₯Ό λ°ννλ ν¨μμ
λλ€."""
|
103 |
|
104 |
input_img = Image.fromarray(inputs)
|
105 |
-
# if button_text == "detection":
|
106 |
-
# inputs_detection = processor_detection(images=input_img, return_tensors="pt")
|
107 |
-
# outputs_detection = model_detection(**inputs_detection)
|
108 |
-
|
109 |
-
# target_sizes = torch.tensor([input_img.size[::-1]])
|
110 |
-
# results_detection = processor_detection.post_process_object_detection(
|
111 |
-
# outputs_detection, target_sizes=target_sizes, threshold=0.9
|
112 |
-
# )[0]
|
113 |
-
|
114 |
-
# draw = ImageDraw.Draw(input_img)
|
115 |
-
# for score, label, box in zip(
|
116 |
-
# results_detection["scores"],
|
117 |
-
# results_detection["labels"],
|
118 |
-
# results_detection["boxes"],
|
119 |
-
# ):
|
120 |
-
# box = [round(i, 2) for i in box.tolist()]
|
121 |
-
# label_name = model_detection.config.id2label[label.item()]
|
122 |
-
# print(
|
123 |
-
# f"Detected {label_name} with confidence "
|
124 |
-
# f"{round(score.item(), 3)} at location {box}"
|
125 |
-
# )
|
126 |
-
# draw.rectangle(box, outline="red", width=3)
|
127 |
-
# draw.text((box[0], box[1]), label_name, fill="red", font=None)
|
128 |
-
|
129 |
-
# fig = plt.figure(figsize=(20, 15))
|
130 |
-
# plt.imshow(input_img)
|
131 |
-
# plt.axis("off")
|
132 |
-
# return fig
|
133 |
|
134 |
inputs_segmentation = feature_extractor(images=input_img, return_tensors="tf")
|
135 |
outputs_segmentation = model_segmentation(**inputs_segmentation)
|
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import numpy as np
|
6 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
|
|
7 |
import torch
|
8 |
import tensorflow as tf
|
9 |
from PIL import ImageDraw
|
|
|
101 |
"""κ°μ²΄ κ²μΆ λλ μΈκ·Έλ©ν
μ΄μ
μ μννκ³ κ²°κ³Όλ₯Ό λ°ννλ ν¨μμ
λλ€."""
|
102 |
|
103 |
input_img = Image.fromarray(inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
inputs_segmentation = feature_extractor(images=input_img, return_tensors="tf")
|
106 |
outputs_segmentation = model_segmentation(**inputs_segmentation)
|