Sergidev's picture
Update app.py
63d6b69 verified
raw
history blame
15.4 kB
import os
import gc
import gradio as gr
import numpy as np
import torch
import json
import spaces
import config
import utils
import logging
from PIL import Image, PngImagePlugin
from datetime import datetime
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
import random
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
MODEL = os.getenv(
"MODEL",
"https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors",
)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">High Definition Pony Diffusion</h1>
<p> Gradio demo for PonyDiffusion v6 with image gallery, json support, and advanced options for power users.</p>
<p>❤️ Thank you for 1000 visits! Heart this space if you like it!</p>
<p>🔎 For more details about me, take a look at <a href="https://sergidev.me">My website</a>.</p>
<p>🌚 For dark mode compatibility, click <a href="https://sergidev.me/hdiffusion">here</a>.</p>
</div>
'''
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def load_pipeline(model_name):
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipeline = (
StableDiffusionXLPipeline.from_single_file
if MODEL.endswith(".safetensors")
else StableDiffusionXLPipeline.from_pretrained
)
pipe = pipeline(
model_name,
vae=vae,
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
use_safetensors=True,
add_watermarker=False,
use_auth_token=HF_TOKEN,
variant="fp16",
)
pipe.to(device)
return pipe
def parse_json_parameters(json_str):
try:
params = json.loads(json_str)
required_keys = ['prompt', 'negative_prompt', 'resolution', 'guidance_scale', 'num_inference_steps', 'seed', 'sampler']
for key in required_keys:
if key not in params:
raise ValueError(f"Missing required key: {key}")
# Parse resolution
width, height = map(int, params['resolution'].split(' x '))
return {
'prompt': params['prompt'],
'negative_prompt': params['negative_prompt'],
'seed': params['seed'],
'width': width,
'height': height,
'guidance_scale': params['guidance_scale'],
'num_inference_steps': params['num_inference_steps'],
'sampler': params['sampler'],
'use_upscaler': params.get('use_upscaler', False)
}
except json.JSONDecodeError:
raise ValueError("Invalid JSON format")
except Exception as e:
raise ValueError(f"Error parsing JSON: {str(e)}")
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
custom_width: int = 1024,
custom_height: int = 1024,
guidance_scale: float = 7.0,
num_inference_steps: int = 30,
sampler: str = "DPM++ 2M SDE Karras",
aspect_ratio_selector: str = "1024 x 1024",
use_upscaler: bool = False,
upscaler_strength: float = 0.55,
upscale_by: float = 1.5,
json_params: str = "",
progress=gr.Progress(track_tqdm=True),
) -> Image:
if json_params:
try:
params = parse_json_parameters(json_params)
prompt = params['prompt']
negative_prompt = params['negative_prompt']
seed = params['seed']
custom_width = params['width']
custom_height = params['height']
guidance_scale = params['guidance_scale']
num_inference_steps = params['num_inference_steps']
sampler = params['sampler']
use_upscaler = params['use_upscaler']
except ValueError as e:
raise gr.Error(str(e))
generator = utils.seed_everything(seed)
width, height = utils.aspect_ratio_handler(
aspect_ratio_selector,
custom_width,
custom_height,
)
width, height = utils.preprocess_image_dimensions(width, height)
backup_scheduler = pipe.scheduler
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
if use_upscaler:
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
metadata = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"resolution": f"{width} x {height}",
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"seed": seed,
"sampler": sampler,
}
if use_upscaler:
new_width = int(width * upscale_by)
new_height = int(height * upscale_by)
metadata["use_upscaler"] = {
"upscale_method": "nearest-exact",
"upscaler_strength": upscaler_strength,
"upscale_by": upscale_by,
"new_resolution": f"{new_width} x {new_height}",
}
else:
metadata["use_upscaler"] = None
logger.info(json.dumps(metadata, indent=4))
try:
if use_upscaler:
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="latent",
).images
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
images = upscaler_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=upscaled_latents,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
strength=upscaler_strength,
generator=generator,
output_type="pil",
).images
else:
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
).images
if images and IS_COLAB:
for image in images:
filepath = utils.save_image(image, metadata, OUTPUT_DIR)
logger.info(f"Image saved as {filepath} with metadata")
return images, metadata
except Exception as e:
logger.exception(f"An error occurred: {e}")
raise
finally:
if use_upscaler:
del upscaler_pipe
pipe.scheduler = backup_scheduler
utils.free_memory()
# Initialize an empty list to store the generation history
generation_history = []
# Function to update the history list
def update_history_list():
return [item["image"] for item in generation_history]
# Function to handle image click in history
def handle_image_click(evt: gr.SelectData):
selected = generation_history[evt.index]
return selected["image"], json.dumps(selected["metadata"], indent=2)
# Modify the generate function to add results to the history
def generate_and_update_history(*args, **kwargs):
images, metadata = generate(*args, **kwargs)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
generation_history.insert(0, {
"prompt": metadata["prompt"],
"timestamp": timestamp,
"image": images[0],
"metadata": metadata
})
if len(generation_history) > 10: # Limit history to 10 items
generation_history.pop()
return images[0], json.dumps(metadata, indent=2), update_history_list()
# Load the character list
with open('characterfull.txt', 'r') as f:
characters = [line.strip() for line in f.readlines()]
# Function to get a random character
def get_random_character():
return random.choice(characters)
if torch.cuda.is_available():
pipe = load_pipeline(MODEL)
logger.info("Loaded on Device!")
else:
pipe = None
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=5,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button(
"Generate",
variant="primary",
scale=0
)
result = gr.Image(
label="Result",
show_label=False
)
with gr.Accordion(label="Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=5,
placeholder="Enter a negative prompt",
value=""
)
aspect_ratio_selector = gr.Radio(
label="Aspect Ratio",
choices=config.aspect_ratios,
value="1024 x 1024",
container=True,
)
with gr.Group(visible=False) as custom_resolution:
with gr.Row():
custom_width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
custom_height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
with gr.Row() as upscaler_row:
upscaler_strength = gr.Slider(
label="Strength",
minimum=0,
maximum=1,
step=0.05,
value=0.55,
visible=False,
)
upscale_by = gr.Slider(
label="Upscale by",
minimum=1,
maximum=1.5,
step=0.1,
value=1.5,
visible=False,
)
sampler = gr.Dropdown(
label="Sampler",
choices=config.sampler_list,
interactive=True,
value="DPM++ 2M SDE Karras",
)
with gr.Row():
seed = gr.Slider(
label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Group():
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=12,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
with gr.Accordion(label="Generation Parameters", open=False):
gr_metadata = gr.JSON(label="Metadata", show_label=False)
json_input = gr.TextArea(label="Edit/Paste JSON Parameters", placeholder="Paste or edit JSON parameters here")
generate_from_json = gr.Button("Generate from JSON")
with gr.Accordion("Randomize", open=False):
random_character_button = gr.Button("Random Character")
with gr.Accordion("Generation History", open=False) as history_accordion:
history_gallery = gr.Gallery(
label="History",
show_label=False,
elem_id="history_gallery",
columns=5,
rows=2,
height="auto"
)
with gr.Row():
selected_image = gr.Image(label="Selected Image", interactive=False)
selected_metadata = gr.JSON(label="Selected Metadata", show_label=False)
gr.Examples(
examples=config.examples,
inputs=prompt,
outputs=[result, gr_metadata],
fn=lambda *args, **kwargs: generate_and_update_history(*args, use_upscaler=True, **kwargs),
cache_examples=CACHE_EXAMPLES,
)
use_upscaler.change(
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
inputs=use_upscaler,
outputs=[upscaler_strength, upscale_by],
queue=False,
api_name=False,
)
aspect_ratio_selector.change(
fn=lambda x: gr.update(visible=x == "Custom"),
inputs=aspect_ratio_selector,
outputs=custom_resolution,
queue=False,
api_name=False,
)
inputs = [
prompt,
negative_prompt,
seed,
custom_width,
custom_height,
guidance_scale,
num_inference_steps,
sampler,
aspect_ratio_selector,
use_upscaler,
upscaler_strength,
upscale_by,
json_input,
]
prompt.submit(
fn=utils.randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_and_update_history,
inputs=inputs,
outputs=[result, gr_metadata, history_gallery],
)
negative_prompt.submit(
fn=utils.randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_and_update_history,
inputs=inputs,
outputs=[result, gr_metadata, history_gallery],
)
run_button.click(
fn=utils.randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_and_update_history,
inputs=inputs,
outputs=[result, gr_metadata, history_gallery],
)
generate_from_json.click(
fn=generate_and_update_history,
inputs=inputs,
outputs=[result, gr_metadata, history_gallery],
)
random_character_button.click(
fn=get_random_character,
inputs=[],
outputs=[prompt]
)
history_gallery.select(
fn=handle_image_click,
inputs=[],
outputs=[selected_image, selected_metadata]
)
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)