|
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
from langchain_community.vectorstores import FAISS
|
|
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
import os
|
|
from src.helper import load_pdf, text_split, download_hugging_face_embeddings
|
|
DATA_PATH = r'G:\Chatbot\data'
|
|
DB_FAISS_PATH = r'G:\Chatbot\data\vector'
|
|
|
|
|
|
'''extracted_data = load_pdf(r"G:\Chatbot\data")
|
|
text_chunks = text_split(extracted_data)
|
|
embeddings = download_hugging_face_embeddings()
|
|
# Initializing the Faiss
|
|
db = FAISS.from_documents(text_chunks, embeddings)
|
|
db.save_local(DB_FAISS_PATH)
|
|
# I change the above DB_FAISS_PATH
|
|
# db.save_local(r"G:\Chatbot\DB_FAISS_PATH")'''
|
|
|
|
|
|
|
|
def create_vector_db():
|
|
extracted_data = load_pdf(DATA_PATH)
|
|
text_chunks = text_split(extracted_data)
|
|
embeddings = download_hugging_face_embeddings()
|
|
db = FAISS.from_documents(text_chunks, embeddings)
|
|
db.save_local(DB_FAISS_PATH)
|
|
print("### db is created")
|
|
|
|
|
|
'''# Create vector database
|
|
def create_vector_db():
|
|
loader = DirectoryLoader(DATA_PATH,
|
|
glob='*.pdf',
|
|
loader_cls=PyPDFLoader)
|
|
|
|
documents = loader.load()
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,
|
|
chunk_overlap=50)
|
|
texts = text_splitter.split_documents(documents)
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
|
|
model_kwargs={'device': 'cuda'})
|
|
|
|
db = FAISS.from_documents(texts, embeddings)
|
|
db.save_local(DB_FAISS_PATH)
|
|
|
|
create_vector_db() # Call the function directly in the cell'''
|
|
|