import gradio as gr import random import time from langchain.chat_models import ChatOpenAI from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Pinecone from langchain.chains import LLMChain from langchain.chains.retrieval_qa.base import RetrievalQA from langchain.chains.question_answering import load_qa_chain import pinecone import os os.environ["TOKENIZERS_PARALLELISM"] = "false" #OPENAI_API_KEY = "" OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "") OPENAI_TEMP = 0 PINECONE_KEY = os.environ.get("PINECONE_KEY", "") PINECONE_ENV = os.environ.get("PINECONE_ENV", "asia-northeast1-gcp") PINECONE_INDEX = os.environ.get("PINECONE_INDEX", "3gpp") EMBEDDING_MODEL = os.environ.get("PINECONE_INDEX", "sentence-transformers/all-mpnet-base-v2") # return top-k text chunks from vector store TOP_K_DEFAULT = 10 TOP_K_MAX = 25 BUTTON_MIN_WIDTH = 180 STATUS_NOK = "404-MODEL UNREADY-critical" STATUS_OK = "200-MODEL LOADED-9cf" def get_status(inputs) -> str: return f"""""" MODEL_NULL = get_status(STATUS_NOK) MODEL_DONE = get_status(STATUS_OK) MODEL_WARNING = "Please paste your OpenAI API Key from openai.com and press 'Enter' to initialize this application!" webui_title = """ # OpenAI Chatbot Based on Vector Database ## Example of 3GPP """ KEY_INIT = "Initialize Model" KEY_SUBMIT = "Submit" KEY_CLEAR = "Clear" init_message = f"""Welcome to use 3GPP Chatbot, this demo toolkit is based on OpenAI with LangChain and Pinecone 1. Insert your OpenAI API key and click `{KEY_INIT}` 2. Insert your Question and click `{KEY_SUBMIT}` """ #---------------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------------------------------------------- def init_model(api_key, emb_name, db_api_key, db_env, db_index): try: if (api_key and api_key.startswith("sk-") and len(api_key) > 50) and \ (emb_name and db_api_key and db_env and db_index): embeddings = HuggingFaceEmbeddings(model_name=emb_name) pinecone.init(api_key = db_api_key, environment = db_env) #llm = OpenAI(temperature=OPENAI_TEMP, model_name="gpt-3.5-turbo-0301") llm = ChatOpenAI(temperature = OPENAI_TEMP, openai_api_key = api_key) chain = load_qa_chain(llm, chain_type="stuff") db = Pinecone.from_existing_index(index_name = db_index, embedding = embeddings) return api_key, MODEL_DONE, chain, db, None else: return None,MODEL_NULL,None,None,None except Exception as e: print(e) return None,MODEL_NULL,None,None,None def get_chat_history(inputs) -> str: res = [] for human, ai in inputs: res.append(f"Human: {human}\nAI: {ai}") return "\n".join(res) def remove_duplicates(documents): seen_content = set() unique_documents = [] for doc in documents: if doc.page_content not in seen_content: seen_content.add(doc.page_content) unique_documents.append(doc) return unique_documents def doc_similarity(query, db, top_k): docsearch = db.as_retriever(search_kwargs={'k':top_k}) docs = docsearch.get_relevant_documents(query) udocs = remove_duplicates(docs) return udocs def user(user_message, history): return "", history+[[user_message, None]] def bot(box_message, ref_message, chain, db, top_k): # bot_message = random.choice(["Yes", "No"]) # 0 is user question, 1 is bot response question = box_message[-1][0] history = box_message[:-1] if (not chain) or (not db): box_message[-1][1] = MODEL_WARNING return box_message, "", "" if not ref_message: ref_message = question details = f"Q: {question}" else: details = f"Q: {question}\nR: {ref_message}" docs = doc_similarity(ref_message, db, top_k) delta_top_k = top_k - len(docs) if delta_top_k > 0: docs = doc_similarity(ref_message, db, top_k+delta_top_k) print(docs) all_output = chain({"input_documents": docs, "question": question, "chat_history": get_chat_history(history)}) bot_message = all_output['output_text'] source = "".join([f"""
{doc.metadata["source"]} {doc.page_content}
""" for i, doc in enumerate(docs)]) #print(source) box_message[-1][1] = bot_message return box_message, "", [[details, source]] #---------------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------------------------------------------- with gr.Blocks( theme = "Base", css = """.bigbox { min-height:200px; } """) as demo: llm_chain = gr.State() vector_db = gr.State() gr.Markdown(webui_title) gr.Markdown(init_message) with gr.Row(): with gr.Column(scale=10): llm_api_textbox = gr.Textbox( label = "OpenAI API Key", show_label = False, value = OPENAI_API_KEY, placeholder = "Paste Your OpenAI API Key (sk-...) and Hit ENTER", lines=1, type='password') with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH): init = gr.Button(KEY_INIT) #.style(full_width=False) model_statusbox = gr.HTML(MODEL_NULL) with gr.Tab("3GPP-Chatbot"): with gr.Row(): with gr.Column(scale=10): chatbot = gr.Chatbot(elem_classes="bigbox") ''' with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH): temp = gr.Slider(0, 2, value=OPENAI_TEMP, step=0.1, label="temperature", interactive=True) init = gr.Button("Init") ''' with gr.Row(): with gr.Column(scale=10): query = gr.Textbox(label="Question:", lines=2) ref = gr.Textbox(label="Reference(optional):") with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH): clear = gr.Button(KEY_CLEAR) submit = gr.Button(KEY_SUBMIT,variant="primary") with gr.Tab("Details"): top_k = gr.Slider(1, TOP_K_MAX, value=TOP_K_DEFAULT, step=1, label="Vector similarity top_k", interactive=True) detail_panel = gr.Chatbot(label="Related Docs") with gr.Tab("Database"): with gr.Row(): emb_textbox = gr.Textbox( label = "Embedding Model", # show_label = False, value = EMBEDDING_MODEL, placeholder = "Paste Your Embedding Model Repo on HuggingFace", lines=1, interactive=True, type='email') with gr.Row(): db_api_textbox = gr.Textbox( label = "Pinecone API Key", # show_label = False, value = PINECONE_KEY, placeholder = "Paste Your Pinecone API Key (xx-xx-xx-xx-xx) and Hit ENTER", lines=1, interactive=True, type='password') with gr.Row(): db_env_textbox = gr.Textbox( label = "Pinecone Environment", # show_label = False, value = PINECONE_ENV, placeholder = "Paste Your Pinecone Environment (xx-xx-xx) and Hit ENTER", lines=1, interactive=True, type='email') db_index_textbox = gr.Textbox( label = "Pinecone Index", # show_label = False, value = PINECONE_INDEX, placeholder = "Paste Your Pinecone Index (xxxx) and Hit ENTER", lines=1, interactive=True, type='email') init_input = [llm_api_textbox, emb_textbox, db_api_textbox, db_env_textbox, db_index_textbox] init_output = [llm_api_textbox, model_statusbox, llm_chain, vector_db, chatbot] llm_api_textbox.submit(init_model, init_input, init_output) init.click(init_model, init_input, init_output) submit.click(user, [query, chatbot], [query, chatbot], queue=False).then( bot, [chatbot, ref, llm_chain, vector_db, top_k], [chatbot, ref, detail_panel] ) clear.click(lambda: (None,None,None), None, [query, ref, chatbot], queue=False) #---------------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------------------------------------------- if __name__ == "__main__": demo.launch(share=False, inbrowser=True)