Shekswess commited on
Commit
b16a321
·
1 Parent(s): 26376e0

Default Values

Browse files
Files changed (1) hide show
  1. app.py +14 -33
app.py CHANGED
@@ -28,8 +28,6 @@ def generate_synthetic_dataset(
28
  temperature,
29
  top_p,
30
  max_tokens,
31
- api_base,
32
- api_key,
33
  dataset_type,
34
  topic,
35
  domains,
@@ -48,8 +46,6 @@ def generate_synthetic_dataset(
48
  temperature (float): The temperature for the LLM.
49
  top_p (float): The top_p value for the LLM.
50
  max_tokens (int): The maximum number of tokens for the LLM.
51
- api_base (str): The API base URL.
52
- api_key (str): The API key.
53
  dataset_type (str): The type of dataset to generate.
54
  topic (str): The topic of the dataset.
55
  domains (str): The domains for the dataset.
@@ -86,22 +82,13 @@ def generate_synthetic_dataset(
86
  ):
87
  return "All fields except API Base and API Key must be filled."
88
 
89
- if api_base and api_key:
90
- llm_config = LLMConfig(
91
- model=llm_model,
92
- temperature=temperature,
93
- top_p=top_p,
94
- max_tokens=max_tokens,
95
- api_base=api_base,
96
- api_key=api_key,
97
- )
98
- else:
99
- llm_config = LLMConfig(
100
- model=llm_model,
101
- temperature=temperature,
102
- top_p=top_p,
103
- max_tokens=max_tokens,
104
- )
105
 
106
  dataset_config = DatasetConfig(
107
  topic=topic,
@@ -168,7 +155,7 @@ def ui_main():
168
 
169
  with gr.Row():
170
  llm_model = gr.Textbox(
171
- label="LLM Model", placeholder="model_provider/model_name"
172
  )
173
  temperature = gr.Slider(
174
  label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.5
@@ -177,10 +164,6 @@ def ui_main():
177
  label="Top P", minimum=0.0, maximum=1.0, step=0.1, value=0.9
178
  )
179
  max_tokens = gr.Number(label="Max Tokens", value=2048)
180
- api_base = gr.Textbox(label="API Base", placeholder="API Base - Optional")
181
- api_key = gr.Textbox(
182
- label="API Key", placeholder="Your API Key - Optional", type="password"
183
- )
184
 
185
  with gr.Row():
186
  dataset_type = gr.Dropdown(
@@ -194,15 +177,15 @@ def ui_main():
194
  "Text Classification",
195
  ],
196
  )
197
- topic = gr.Textbox(label="Topic", placeholder="Dataset topic")
198
- domains = gr.Textbox(label="Domains", placeholder="Comma-separated domains")
199
  language = gr.Textbox(
200
  label="Language", placeholder="Language", value="English"
201
  )
202
  additional_description = gr.Textbox(
203
  label="Additional Description",
204
  placeholder="Additional description",
205
- value="",
206
  )
207
  num_entries = gr.Number(label="Number of Entries", value=1000)
208
 
@@ -211,17 +194,17 @@ def ui_main():
211
  label="Hugging Face Token",
212
  placeholder="Your HF Token",
213
  type="password",
214
- value=None,
215
  )
216
  hf_repo_name = gr.Textbox(
217
  label="Hugging Face Repo Name",
218
  placeholder="organization_or_user_name/dataset_name",
219
- value=None,
220
  )
221
  llm_env_vars = gr.Textbox(
222
  label="LLM Environment Variables",
223
  placeholder="Comma-separated environment variables (e.g., KEY1=VALUE1, KEY2=VALUE2)",
224
- value=None,
225
  )
226
 
227
  generate_button = gr.Button("Generate Dataset")
@@ -234,8 +217,6 @@ def ui_main():
234
  temperature,
235
  top_p,
236
  max_tokens,
237
- api_base,
238
- api_key,
239
  dataset_type,
240
  topic,
241
  domains,
 
28
  temperature,
29
  top_p,
30
  max_tokens,
 
 
31
  dataset_type,
32
  topic,
33
  domains,
 
46
  temperature (float): The temperature for the LLM.
47
  top_p (float): The top_p value for the LLM.
48
  max_tokens (int): The maximum number of tokens for the LLM.
 
 
49
  dataset_type (str): The type of dataset to generate.
50
  topic (str): The topic of the dataset.
51
  domains (str): The domains for the dataset.
 
82
  ):
83
  return "All fields except API Base and API Key must be filled."
84
 
85
+
86
+ llm_config = LLMConfig(
87
+ model=llm_model,
88
+ temperature=temperature,
89
+ top_p=top_p,
90
+ max_tokens=max_tokens,
91
+ )
 
 
 
 
 
 
 
 
 
92
 
93
  dataset_config = DatasetConfig(
94
  topic=topic,
 
155
 
156
  with gr.Row():
157
  llm_model = gr.Textbox(
158
+ label="LLM Model", placeholder="model_provider/model_name", value="huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct"
159
  )
160
  temperature = gr.Slider(
161
  label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.5
 
164
  label="Top P", minimum=0.0, maximum=1.0, step=0.1, value=0.9
165
  )
166
  max_tokens = gr.Number(label="Max Tokens", value=2048)
 
 
 
 
167
 
168
  with gr.Row():
169
  dataset_type = gr.Dropdown(
 
177
  "Text Classification",
178
  ],
179
  )
180
+ topic = gr.Textbox(label="Topic", placeholder="Dataset topic", value="Artificial Intelligence")
181
+ domains = gr.Textbox(label="Domains", placeholder="Comma-separated domains", value="Machine Learning, Deep Learning")
182
  language = gr.Textbox(
183
  label="Language", placeholder="Language", value="English"
184
  )
185
  additional_description = gr.Textbox(
186
  label="Additional Description",
187
  placeholder="Additional description",
188
+ value="This dataset must be more focused on healthcare implementations of AI, Machine Learning, and Deep Learning.",
189
  )
190
  num_entries = gr.Number(label="Number of Entries", value=1000)
191
 
 
194
  label="Hugging Face Token",
195
  placeholder="Your HF Token",
196
  type="password",
197
+ value="hf_1234566789912345677889",
198
  )
199
  hf_repo_name = gr.Textbox(
200
  label="Hugging Face Repo Name",
201
  placeholder="organization_or_user_name/dataset_name",
202
+ value="shekswess/synthgenai-dataset",
203
  )
204
  llm_env_vars = gr.Textbox(
205
  label="LLM Environment Variables",
206
  placeholder="Comma-separated environment variables (e.g., KEY1=VALUE1, KEY2=VALUE2)",
207
+ value="HUGGINGFACE_API_KEY=hf_1234566789912345677889",
208
  )
209
 
210
  generate_button = gr.Button("Generate Dataset")
 
217
  temperature,
218
  top_p,
219
  max_tokens,
 
 
220
  dataset_type,
221
  topic,
222
  domains,