import streamlit as st import altair as alt from constants import delay_category import gdown import pandas as pd from pydantic.v1 import BaseSettings from streamlit_pandas_profiling import st_profile_report from streamlit_extras.switch_page_button import switch_page st.set_page_config(page_title='Flight Never Delay', page_icon = '✈️', layout = 'centered', initial_sidebar_state = 'expanded') """ @st.cache(suppress_st_warning=True) def get_data(filename): url = "https://drive.google.com/uc?id=1-4OXefZDioyrobHyhtBfAFMNMem_XmLp" output = filename gdown.download(url, output, quiet=False) """ @st.cache(suppress_st_warning=True) def profiler(df): pr = df.profile_report() st_profile_report(pr) def intro(): st.header("Project Flight Never Delay ✈️") st.markdown("As frequent travelers, our team members often experience flight delays and cancellations.\ However, there is no good way for us to be informed on whether a flight will be delayed or cancelled in advance.") st.markdown("To address our problem, we built a flight delay and cancellation prediction model using previous \ flight delay data from the [Bureau of Transportation Statistics - On-Time : Marketing Carrier On-Time Performance dataset](https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGK&QO_fu146_anzr=b0-gvzr). \ We further augmented our dataset with fine-grained geographic information by mapping airports to US state \ names and coordinates (latitude and longitude) from a [Kaggle dataset](https://www.kaggle.com/datasets/usdot/flight-delays?select=airports.csv).") st.markdown("After data cleaning, we have a dataset of 1,141,693 flight delays from 2021 covering information such as flight time, \ flight carrier, flight origin and destinations, flight delay times and reasons, flight cancellations and reasons, and geographical information. You may view \ the full dataset at the bottom of the page.") # st.write("Cancel rate: 9.38 %") # st.write("Average delay time: 66.63 minutes") # df = pd.DataFrame( # {"reasons of delay": list(delay_category.keys()), "value": list(delay_category.values())} # ) # pie_chart = alt.Chart(df).mark_arc().encode( # theta=alt.Theta(field="value", type="quantitative"), # color=alt.Color(field="reasons of delay", type="nominal"), # ) # st.altair_chart(pie_chart) if __name__ == '__main__': # st.set_page_config(layout="wide") #st.set_page_config(page_title='Flight Never Delay', page_icon = '✈️', layout = 'centered', initial_sidebar_state = 'expanded') intro() st.write("Click on one of the following buttons to continue.") if st.button("Visualize correlations in the data! 📊"): switch_page("Visualization") if st.button("Predict my flight! 🧠"): switch_page("Prediction") st.markdown("""---""") filename = "data-coordinates.csv" #get_data(filename) df = pd.read_csv(filename) with st.expander("View full dataset"): st.subheader("Dataset") st.dataframe(df) # if st.checkbox("Generate data profile (this takes several minutes as the dataset is large)"): # profiler(df) # nav = st.sidebar.radio("Navigation", # ("Introduction", "Visualization", "Prediction")) # if nav == "Introduction": # intro() # elif nav == "Visualization": # vis() # else: # pred() # profiler(filename)