Shreyas094's picture
Update app.py
0b607fb verified
raw
history blame
7.88 kB
import os
import logging
import gradio as gr
from huggingface_hub import hf_hub_download
from transformers import HuggingFaceHub
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.llm_output_settings import (
LlmStructuredOutputSettings,
LlmStructuredOutputType,
)
from llama_cpp_agent.tools import WebSearchTool
from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt
from pydantic import BaseModel, Field
from trafilatura import fetch_url, extract
import json
from datetime import datetime, timezone
from typing import List
llm = None
llm_model = None
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
examples = [
["latest news about Yann LeCun"],
["Latest news site:github.blog"],
["Where I can find best hotel in Galapagos, Ecuador intitle:hotel"],
["filetype:pdf intitle:python"]
]
def get_context_by_model(model_name):
model_context_limits = {
"Mistral-7B-Instruct-v0.3": 32768,
}
return model_context_limits.get(model_name, None)
def get_messages_formatter_type(model_name):
model_name = model_name.lower()
if "mistral" in model_name:
return MessagesFormatterType.MISTRAL
else:
return MessagesFormatterType.CHATML
def get_model(temperature, top_p, repetition_penalty):
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
model_kwargs={
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"max_length": 1000
},
huggingfacehub_api_token=huggingface_token
)
def get_server_time():
utc_time = datetime.now(timezone.utc)
return utc_time.strftime("%Y-%m-%d %H:%M:%S")
def get_website_content_from_url(url: str) -> str:
try:
downloaded = fetch_url(url)
result = extract(downloaded, include_formatting=True, include_links=True, output_format='json', url=url)
if result:
result = json.loads(result)
return f'=========== Website Title: {result["title"]} ===========\n\n=========== Website URL: {url} ===========\n\n=========== Website Content ===========\n\n{result["raw_text"]}\n\n=========== Website Content End ===========\n\n'
else:
return ""
except Exception as e:
return f"An error occurred: {str(e)}"
class CitingSources(BaseModel):
sources: List[str] = Field(
...,
description="List of sources to cite. Should be an URL of the source. E.g. GitHub URL, Blogpost URL or Newsletter URL."
)
def write_message_to_user():
return "Please write the message to the user."
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
global llm
global llm_model
chat_template = get_messages_formatter_type(model)
if llm is None or llm_model != model:
llm = get_model(temperature, top_p, repeat_penalty)
llm_model = model
provider = LlamaCppPythonProvider(llm)
logging.info(f"Loaded chat examples: {chat_template}")
search_tool = WebSearchTool(
llm_provider=provider,
message_formatter_type=chat_template,
max_tokens_search_results=12000,
max_tokens_per_summary=2048,
)
web_search_agent = LlamaCppAgent(
provider,
system_prompt=web_search_system_prompt,
predefined_messages_formatter_type=chat_template,
debug_output=True,
)
answer_agent = LlamaCppAgent(
provider,
system_prompt=research_system_prompt,
predefined_messages_formatter_type=chat_template,
debug_output=True,
)
settings = provider.get_provider_default_settings()
settings.stream = False
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
output_settings = LlmStructuredOutputSettings.from_functions(
[search_tool.get_tool()]
)
messages = BasicChatHistory()
for msn in history:
user = {"role": Roles.user, "content": msn[0]}
assistant = {"role": Roles.assistant, "content": msn[1]}
messages.add_message(user)
messages.add_message(assistant)
result = web_search_agent.get_chat_response(
message,
llm_sampling_settings=settings,
structured_output_settings=output_settings,
add_message_to_chat_history=False,
add_response_to_chat_history=False,
print_output=False,
)
outputs = ""
settings.stream = True
response_text = answer_agent.get_chat_response(
f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" +
result[0]["return_value"],
role=Roles.tool,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False,
)
for text in response_text:
outputs += text
yield outputs
output_settings = LlmStructuredOutputSettings.from_pydantic_models(
[CitingSources], LlmStructuredOutputType.object_instance
)
citing_sources = answer_agent.get_chat_response(
"Cite the sources you used in your response.",
role=Roles.tool,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=False,
structured_output_settings=output_settings,
print_output=False,
)
outputs += "\n\nSources:\n"
outputs += "\n".join(citing_sources.sources)
yield outputs
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown([
'Mistral-7B-Instruct-v0.3'
],
value="Mistral-7B-Instruct-v0.3",
label="Model"
),
gr.Textbox(value=web_search_system_prompt, label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.45, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
theme=gr.themes.Soft(
primary_hue="orange",
secondary_hue="amber",
neutral_hue="gray",
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
body_background_fill_dark="#0c0505",
block_background_fill_dark="#0c0505",
block_border_width="1px",
block_title_background_fill_dark="#1b0f0f",
input_background_fill_dark="#140b0b",
button_secondary_background_fill_dark="#140b0b",
border_color_accent_dark="#1b0f0f",
border_color_primary_dark="#1b0f0f",
slider_color="#ff911a",
button_primary_background_fill="#ff911a",
button_primary_background_fill_dark="#ff911a",
button_primary_text_color="#f9f9f9",
button_primary_text_color_dark="#f9f9f9"
),
examples=examples,
title="llama.cpp agent",
)
demo.queue().launch()