m-ric's picture
m-ric HF staff
Update app.py
fecada4 verified
raw
history blame
4.07 kB
import os
import gradio as gr
from transformers import ReactCodeAgent, HfEngine, Tool
from gradio_agentchatbot import (
AgentChatbot,
stream_from_transformers_agent,
ChatMessage,
)
from dotenv import load_dotenv
from huggingface_hub import login
from transformers.agents.default_tools import (
BASE_PYTHON_TOOLS,
LIST_SAFE_MODULES,
evaluate_python_code,
)
# to load SerpAPI key
load_dotenv()
login(os.getenv("HUGGINGFACEHUB_API_KEY"))
llm_engine = HfEngine(model="meta-llama/Meta-Llama-3-70B-Instruct")
authorized_imports = ["numpy"]
agent = ReactCodeAgent(
llm_engine=llm_engine,
tools=[],
additional_authorized_imports=authorized_imports,
max_iterations=10,
)
class FinalAnswerToolWithVerification(Tool):
name = "final_answer"
description = "Provides a final answer to the given problem"
inputs = {
"answer": {"type": "text", "description": "The final answer to the problem"}
}
output_type = "any"
def forward(self, answer):
if "def test" not in answer:
raise Exception(
"I can only accept from you a code snippet answer that defines test functions in python, anything else will not work. PLEASE PROVIDE ME A FULL CODE SNIPPET CONTAINING THE DEFINITION OF THE TESTS."
)
return answer
final_answer_tool = FinalAnswerToolWithVerification()
agent._toolbox.update_tool(final_answer_tool)
function = """import numpy as np
def moving_average(x, w):
return np.convolve(x, np.ones(w), 'valid') / w"""
task = """I will give you a basic function that I've created.
Now I want you to generate a set of unit tests for these functions, check that they run, and give them to me.
Please follow these steps in order:
1. Define and run the function given o you, so that it gets defined in your interpreter.
2. Generate one test function as a python blob, with assert statements
3. Run the test function in a code snippet and make sure the tests pass
4. Return to me the complete TEST function (not the original function) as a string code snippet.
---
Example:
Here is your function:
```py
def get_even_numbers(numbers):
even_numbers = []
for number in numbers:
if number % 2 == 0:
even_numbers.append(number)
return even_numbers
```
Now generate test functions for me!
Thought: Let's re-define the given function and generate a test.
Code:
```py
def get_even_numbers(numbers):
even_numbers = []
for number in numbers:
if number % 2 == 0:
even_numbers.append(number)
return even_numbers
def test_get_even_numbers():
assert get_even_numbers([1, 2, 3, 4, 5]) == [2, 4]
print("No error found!")
test_get_even_numbers()
```
Observation: "No error found!"
Thought: the interpreter ran tests with no error. So we can return the function IN A TEXT SNIPPET.
Code:
```py
fianl_answer_snippet = \"\"\"
def test_get_even_numbers():
assert get_even_numbers([1, 2, 3, 4, 5]) == [2, 4]
print("No error found!")
\"\"\"
final_answer(final_answer_snippet)
```
---
Now proceed!
Here is your function:
```py
<<function>>
```
Now generate test functions for me!
"""
def interact_with_agent(prompt):
full_prompt = task.replace("<<function>>", prompt)
messages = []
messages.append(ChatMessage(role="user", content=full_prompt))
yield messages
for msg in stream_from_transformers_agent(agent, full_prompt):
messages.append(msg)
yield messages
yield messages
with gr.Blocks(theme="soft") as demo:
gr.Markdown("""### Python test generator
Write your function in the left textbox, and the agent on the right will generate tests for you!""")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
lines=1, label="Your function to test", value=function
)
submit = gr.Button("Generate tests!")
with gr.Column():
chatbot = AgentChatbot(label="Agent")
submit.click(interact_with_agent, [text_input], [chatbot])
if __name__ == "__main__":
demo.launch()