Spaces:
Sleeping
Sleeping
Shroogawh24
commited on
Commit
•
624c95c
1
Parent(s):
554c5b3
Update app.py
Browse files
app.py
CHANGED
@@ -2,22 +2,24 @@ import gradio as gr
|
|
2 |
import os
|
3 |
import openai
|
4 |
import pandas as pd
|
5 |
-
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
6 |
from langchain.vectorstores import FAISS
|
7 |
from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
8 |
from langchain.chains import LLMChain
|
9 |
from langchain_core.output_parsers.string import StrOutputParser
|
10 |
from langchain.chat_models import ChatOpenAI
|
|
|
11 |
|
12 |
from sentence_transformers import SentenceTransformer
|
13 |
|
14 |
-
|
|
|
|
|
15 |
|
16 |
# Set the OpenAI API key
|
17 |
openai.api_key = os.getenv("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")
|
18 |
|
19 |
# Load the FAISS index using LangChain's FAISS implementation
|
20 |
-
db = FAISS.load_local("Faiss",
|
21 |
parser = StrOutputParser()
|
22 |
|
23 |
# Load your data (e.g., a DataFrame)
|
@@ -25,7 +27,7 @@ df = pd.read_pickle('df_news (1).pkl')
|
|
25 |
|
26 |
# Search function to retrieve relevant documents
|
27 |
def search(query):
|
28 |
-
query_embedding =
|
29 |
D, I = db.similarity_search_with_score(query_embedding, k=10)
|
30 |
results = []
|
31 |
for idx in I[0]:
|
|
|
2 |
import os
|
3 |
import openai
|
4 |
import pandas as pd
|
|
|
5 |
from langchain.vectorstores import FAISS
|
6 |
from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
7 |
from langchain.chains import LLMChain
|
8 |
from langchain_core.output_parsers.string import StrOutputParser
|
9 |
from langchain.chat_models import ChatOpenAI
|
10 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
11 |
|
12 |
from sentence_transformers import SentenceTransformer
|
13 |
|
14 |
+
embeddings = OpenAIEmbeddings()
|
15 |
+
|
16 |
+
#embedding_function = SentenceTransformer("BAAI/bge-large-en-v1.5")
|
17 |
|
18 |
# Set the OpenAI API key
|
19 |
openai.api_key = os.getenv("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")
|
20 |
|
21 |
# Load the FAISS index using LangChain's FAISS implementation
|
22 |
+
db = FAISS.load_local("Faiss", embeddings, allow_dangerous_deserialization=True)
|
23 |
parser = StrOutputParser()
|
24 |
|
25 |
# Load your data (e.g., a DataFrame)
|
|
|
27 |
|
28 |
# Search function to retrieve relevant documents
|
29 |
def search(query):
|
30 |
+
query_embedding = embeddings.embed_query(query).reshape(1, -1).astype('float32')
|
31 |
D, I = db.similarity_search_with_score(query_embedding, k=10)
|
32 |
results = []
|
33 |
for idx in I[0]:
|