File size: 31,151 Bytes
0c97eed
 
 
 
 
 
 
b9a6dd9
0c97eed
 
b9a6dd9
 
 
 
 
 
94b0033
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c97eed
 
 
 
 
b9a6dd9
0c97eed
 
 
24fbd43
b9a6dd9
 
 
bf1337a
 
 
0c97eed
b9a6dd9
 
 
0c97eed
b9a6dd9
 
 
0c97eed
 
b9a6dd9
 
 
 
 
0c97eed
b9a6dd9
 
 
0c97eed
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c97eed
 
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e42459
 
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
1e42459
b9a6dd9
 
1e42459
94b0033
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
629762f
b9a6dd9
629762f
 
 
 
 
b9a6dd9
 
 
 
 
 
 
629762f
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b0033
b9a6dd9
94b0033
b9a6dd9
94b0033
b9a6dd9
 
94b0033
 
 
b9a6dd9
 
 
 
 
94b0033
 
 
0c97eed
 
b9a6dd9
 
 
0c97eed
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
71fd664
0c97eed
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c97eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf1337a
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
bf1337a
b9a6dd9
 
 
0c97eed
 
 
b9a6dd9
71fd664
 
 
 
 
 
 
 
 
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c97eed
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
0c97eed
 
 
b9a6dd9
0c97eed
 
 
 
b9a6dd9
 
0c97eed
 
 
 
b9a6dd9
 
 
0c97eed
b9a6dd9
 
 
 
0c97eed
b9a6dd9
0c97eed
b9a6dd9
 
 
 
 
 
 
bf4e9b3
 
 
 
 
 
 
aa88060
bf4e9b3
 
 
 
 
 
0c97eed
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71fd664
 
 
 
 
 
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c97eed
b9a6dd9
 
 
 
 
 
 
 
 
 
 
1e42459
 
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67ad39b
 
 
 
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96aa432
 
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71fd664
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ebbb2b
0c97eed
b9a6dd9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
try:
    import versa
except ImportError:
    from subprocess import call
    with open('versa.sh', 'rb') as file:
        script = file.read()
    rc = call(script, shell=True)

import os
import shutil
import time
from typing import Generator, Optional, Tuple

import gradio as gr
import nltk
import numpy as np
import torch
from huggingface_hub import HfApi
from pyscripts.utils.dialog_eval.ASR_WER import handle_espnet_ASR_WER
from pyscripts.utils.dialog_eval.human_feedback import (
    natural_vote1_last_response,
    natural_vote2_last_response,
    natural_vote3_last_response,
    natural_vote4_last_response,
    relevant_vote1_last_response,
    relevant_vote2_last_response,
    relevant_vote3_last_response,
    relevant_vote4_last_response,
)
from pyscripts.utils.dialog_eval.LLM_Metrics import (
    DialoGPT_perplexity,
    bert_score,
    perplexity,
    vert,
)
from pyscripts.utils.dialog_eval.TTS_intelligibility import (
    handle_espnet_TTS_intelligibility,
)
from pyscripts.utils.dialog_eval.TTS_speech_quality import TTS_psuedomos

from espnet2.sds.espnet_model import ESPnetSDSModelInterface

# ------------------------
# Hyperparameters
# ------------------------

access_token = os.environ.get("HF_TOKEN")
ASR_name="pyf98/owsm_ctc_v3.1_1B"
LLM_name="meta-llama/Llama-3.2-1B-Instruct"
TTS_name="kan-bayashi/ljspeech_vits"
ASR_options="pyf98/owsm_ctc_v3.1_1B,espnet/owsm_ctc_v3.2_ft_1B,espnet/owsm_v3.1_ebf,librispeech_asr,whisper-large".split(",")
LLM_options="meta-llama/Llama-3.2-1B-Instruct,HuggingFaceTB/SmolLM2-1.7B-Instruct".split(",")
TTS_options="kan-bayashi/ljspeech_vits,kan-bayashi/libritts_xvector_vits,kan-bayashi/vctk_multi_spk_vits,ChatTTS".split(",")
Eval_options="Latency,TTS Intelligibility,TTS Speech Quality,ASR WER,Text Dialog Metrics"
upload_to_hub=None
dialogue_model = ESPnetSDSModelInterface(
    ASR_name, LLM_name, TTS_name, "Cascaded", access_token
)
ASR_curr_name=None
LLM_curr_name=None
TTS_curr_name=None

latency_ASR = 0.0
latency_LM = 0.0
latency_TTS = 0.0

text_str = ""
asr_output_str = ""
vad_output = None
audio_output = None
audio_output1 = None
LLM_response_arr = []
total_response_arr = []
callback = gr.CSVLogger()
start_record_time = None
enable_btn = gr.Button(interactive=True, visible=True)

# ------------------------
# Function Definitions
# ------------------------

def handle_eval_selection(
    option: str,
    TTS_audio_output: str,
    LLM_Output: str,
    ASR_audio_output: str,
    ASR_transcript: str,
):
    """
    Handles the evaluation of a selected metric based on
    user input and provided outputs.

    This function evaluates different aspects of a
    casacaded conversational AI pipeline, such as:
    Latency, TTS intelligibility, TTS speech quality,
    ASR WER, and text dialog metrics.
    It is designed to integrate with Gradio via
    multiple yield statements,
    allowing updates to be displayed in real time.

    Parameters:
    ----------
    option : str
        The evaluation metric selected by the user.
        Supported options include:
        - "Latency"
        - "TTS Intelligibility"
        - "TTS Speech Quality"
        - "ASR WER"
        - "Text Dialog Metrics"
    TTS_audio_output : np.ndarray
        The audio output generated by the TTS module for evaluation.
    LLM_Output : str
        The text output generated by the LLM module for evaluation.
    ASR_audio_output : np.ndarray
        The audio input/output used for ASR evaluation.
    ASR_transcript : str
        The transcript generated by the ASR module for evaluation.

    Returns:
    -------
    str
        A string representation of the evaluation results.
        The specific result depends on the selected evaluation metric:
        - "Latency": Latencies of ASR, LLM, and TTS modules.
        - "TTS Intelligibility": A range of scores indicating how intelligible
        the TTS audio output is based on different reference ASR models.
        - "TTS Speech Quality": A range of scores representing the
        speech quality of the TTS audio output.
        - "ASR WER": The Word Error Rate (WER) of the ASR output
        based on different judge ASR models.
        - "Text Dialog Metrics": A combination of perplexity,
        diversity metrics, and relevance scores for the dialog.

    Raises:
    ------
    ValueError
        If the `option` parameter does not match any supported evaluation metric.

    Example:
    -------
    >>> result = handle_eval_selection(
            option="Latency",
            TTS_audio_output=audio_array,
            LLM_Output="Generated response",
            ASR_audio_output=audio_input,
            ASR_transcript="Expected transcript"
        )
    >>> print(result)
    "ASR Latency: 0.14
     LLM Latency: 0.42
     TTS Latency: 0.21"
    """
    global LLM_response_arr
    global total_response_arr
    yield (option, gr.Textbox(visible=True))
    if option == "Latency":
        text = (
            f"ASR Latency: {latency_ASR:.2f}\n"
            f"LLM Latency: {latency_LM:.2f}\n"
            f"TTS Latency: {latency_TTS:.2f}"
        )
        yield (None, text)
    elif option == "TTS Intelligibility":
        yield (None, handle_espnet_TTS_intelligibility(TTS_audio_output, LLM_Output))
    elif option == "TTS Speech Quality":
        yield (None, TTS_psuedomos(TTS_audio_output))
    elif option == "ASR WER":
        yield (None, handle_espnet_ASR_WER(ASR_audio_output, ASR_transcript))
    elif option == "Text Dialog Metrics":
        yield (
            None,
            perplexity(LLM_Output.replace("\n", " "))
            + vert(LLM_response_arr)
            + bert_score(total_response_arr)
            + DialoGPT_perplexity(
                ASR_transcript.replace("\n", " "), LLM_Output.replace("\n", " ")
            ),
        )
    elif option is None:
        return
    else:
        raise ValueError(f"Unknown option: {option}")


def handle_eval_selection_E2E(
    option: str,
    TTS_audio_output: str,
    LLM_Output: str,
):
    """
    Handles the evaluation of a selected metric based on user input
    and provided outputs.

    This function evaluates different aspects of an E2E
    conversational AI model, such as:
    Latency, TTS intelligibility, TTS speech quality, and
    text dialog metrics.
    It is designed to integrate with Gradio via
    multiple yield statements,
    allowing updates to be displayed in real time.

    Parameters:
    ----------
    option : str
        The evaluation metric selected by the user.
        Supported options include:
        - "Latency"
        - "TTS Intelligibility"
        - "TTS Speech Quality"
        - "Text Dialog Metrics"
    TTS_audio_output : np.ndarray
        The audio output generated by the TTS module for evaluation.
    LLM_Output : str
        The text output generated by the LLM module for evaluation.

    Returns:
    -------
    str
        A string representation of the evaluation results.
        The specific result depends on the selected evaluation metric:
        - "Latency": Latency of the entire system.
        - "TTS Intelligibility": A range of scores indicating how intelligible the
        TTS audio output is based on different reference ASR models.
        - "TTS Speech Quality": A range of scores representing the
         speech quality of the TTS audio output.
        - "Text Dialog Metrics": A combination of perplexity and
        diversity metrics for the dialog.

    Raises:
    ------
    ValueError
        If the `option` parameter does not match any supported evaluation metric.

    Example:
    -------
    >>> result = handle_eval_selection(
            option="Latency",
            TTS_audio_output=audio_array,
            LLM_Output="Generated response",
        )
    >>> print(result)
    "Total Latency: 2.34"
    """
    global LLM_response_arr
    global total_response_arr
    yield (option, gr.Textbox(visible=True))
    if option == "Latency":
        text = f"Total Latency: {latency_TTS:.2f}"
        yield (None, text)
    elif option == "TTS Intelligibility":
        yield (None, handle_espnet_TTS_intelligibility(TTS_audio_output, LLM_Output))
    elif option == "TTS Speech Quality":
        yield (None, TTS_psuedomos(TTS_audio_output))
    elif option == "Text Dialog Metrics":
        yield (None, perplexity(LLM_Output.replace("\n", " ")) + vert(LLM_response_arr))
    elif option is None:
        return
    else:
        raise ValueError(f"Unknown option: {option}")


def start_warmup():
    """
    Initializes and warms up the dialogue and evaluation model.

    This function is designed to ensure that all
    components of the dialogue model are pre-loaded
    and ready for execution, avoiding delays during runtime.
    """
    global dialogue_model
    global ASR_options
    global LLM_options
    global TTS_options
    global ASR_name
    global LLM_name
    global TTS_name
    remove=0
    for opt_count in range(len(ASR_options)):
        opt_count-=remove
        if opt_count>=len(ASR_options):
            break
        print(opt_count)
        print(ASR_options)
        opt = ASR_options[opt_count]
        try:
            for _ in dialogue_model.handle_ASR_selection(opt):
                continue
        except Exception:
            print("Removing " + opt + " from ASR options since it cannot be loaded.")
            ASR_options = ASR_options[:opt_count] + ASR_options[(opt_count + 1) :]
            remove+=1
            if opt == ASR_name:
                ASR_name = ASR_options[0]
    for opt_count in range(len(LLM_options)):
        opt = LLM_options[opt_count]
        try:
            for _ in dialogue_model.handle_LLM_selection(opt):
                continue
        except Exception:
            print("Removing " + opt + " from LLM options since it cannot be loaded.")
            LLM_options = LLM_options[:opt_count] + LLM_options[(opt_count + 1) :]
            if opt == LLM_name:
                LLM_name = LLM_options[0]
    for opt_count in range(len(TTS_options)):
        opt = TTS_options[opt_count]
        try:
            for _ in dialogue_model.handle_TTS_selection(opt):
                continue
        except Exception:
            print("Removing " + opt + " from TTS options since it cannot be loaded.")
            TTS_options = TTS_options[:opt_count] + TTS_options[(opt_count + 1) :]
            if opt == TTS_name:
                TTS_name = TTS_options[0]
    dialogue_model.handle_E2E_selection()
    dialogue_model.client = None
    for _ in dialogue_model.handle_TTS_selection(TTS_name):
        continue
    for _ in dialogue_model.handle_ASR_selection(ASR_name):
        continue
    for _ in dialogue_model.handle_LLM_selection(LLM_name):
        continue
    dummy_input = (
        torch.randn(
            (3000),
            dtype=getattr(torch, "float16"),
            device="cpu",
        )
        .cpu()
        .numpy()
    )
    dummy_text = "This is dummy text"
    for opt in Eval_options:
        handle_eval_selection(opt, dummy_input, dummy_text, dummy_input, dummy_text)


def flash_buttons():
    """
    Enables human feedback buttons after displaying system output.
    """
    btn_updates = (enable_btn,) * 8
    yield (
        "",
        "",
    ) + btn_updates


def transcribe(
    stream: np.ndarray,
    new_chunk: Tuple[int, np.ndarray],
    TTS_option: str,
    ASR_option: str,
    LLM_option: str,
    type_option: str,
    input_text: str,
):
    """
    Processes and transcribes an audio stream in real-time.

    This function handles the transcription of audio input
    and its transformation through a cascaded
    or E2E conversational AI system.
    It dynamically updates the transcription, text generation,
    and synthesized speech output, while managing global states and latencies.

    Args:
        stream: The current audio stream buffer.
            `None` if the stream is being reset (e.g., after user refresh).
        new_chunk: A tuple containing:
            - `sr`: Sample rate of the new audio chunk.
            - `y`: New audio data chunk.
        TTS_option: Selected TTS model option.
        ASR_option: Selected ASR model option.
        LLM_option: Selected LLM model option.
        type_option: Type of system ("Cascaded" or "E2E").

    Yields:
        Tuple[Optional[np.ndarray], Optional[str], Optional[str],
        Optional[Tuple[int, np.ndarray]], Optional[Tuple[int, np.ndarray]]]:
            A tuple containing:
            - Updated stream buffer.
            - ASR output text.
            - Generated LLM output text.
            - Audio output as a tuple of sample rate and audio waveform.
            - User input audio as a tuple of sample rate and audio waveform.

    Notes:
        - Resets the session if the transcription exceeds 5 minutes.
        - Updates the Gradio interface elements dynamically.
        - Manages latencies.
    """
    sr, y = new_chunk
    global text_str
    global chat
    global user_role
    global audio_output
    global audio_output1
    global vad_output
    global asr_output_str
    global start_record_time
    global sids
    global spembs
    global latency_ASR
    global latency_LM
    global latency_TTS
    global LLM_response_arr
    global total_response_arr
    if stream is None:
        # Handle user refresh
        for (
            _,
            _,
            _,
            _,
            asr_output_box,
            text_box,
            audio_box,
            _,
            _,
        ) in dialogue_model.handle_type_selection(
            type_option, TTS_option, ASR_option, LLM_option
        ):
            gr.Info("The models are being reloaded due to a browser refresh.")
            yield (stream, asr_output_box, text_box, audio_box, gr.Audio(visible=False))
        stream = y
        text_str = ""
        audio_output = None
        audio_output1 = None
    else:
        stream = np.concatenate((stream, y))
    # import pdb;pdb.set_trace()
    dialogue_model.chat.init_chat(
        {
            "role": "system",
            "content": (
                input_text
            ),
        }
    )
    (
        asr_output_str,
        text_str,
        audio_output,
        audio_output1,
        latency_ASR,
        latency_LM,
        latency_TTS,
        stream,
        change,
    ) = dialogue_model(
        y,
        sr,
        stream,
        asr_output_str,
        text_str,
        audio_output,
        audio_output1,
        latency_ASR,
        latency_LM,
        latency_TTS,
    )
    text_str1 = text_str
    if change:
        print("Output changed")
        if asr_output_str != "":
            total_response_arr.append(asr_output_str.replace("\n", " "))
        LLM_response_arr.append(text_str.replace("\n", " "))
        total_response_arr.append(text_str.replace("\n", " "))
    if (text_str != "") and (start_record_time is None):
        start_record_time = time.time()
    elif start_record_time is not None:
        current_record_time = time.time()
        if current_record_time - start_record_time > 300:
            gr.Info(
                "Conversations are limited to 5 minutes. "
                "The session will restart in approximately 60 seconds. "
                "Please wait for the demo to reset. "
                "Close this message once you have read it.",
                duration=None,
            )
            yield stream, gr.Textbox(visible=False), gr.Textbox(
                visible=False
            ), gr.Audio(visible=False), gr.Audio(visible=False)
            if upload_to_hub is not None:
                api.upload_folder(
                    folder_path="flagged_data_points",
                    path_in_repo="checkpoint_" + str(start_record_time),
                    repo_id=upload_to_hub,
                    repo_type="dataset",
                    token=access_token,
                )
            dialogue_model.chat.buffer = []
            text_str = ""
            audio_output = None
            audio_output1 = None
            asr_output_str = ""
            start_record_time = None
            LLM_response_arr = []
            total_response_arr = []
            shutil.rmtree("flagged_data_points")
            os.mkdir("flagged_data_points")
            yield (stream, asr_output_str, text_str1, audio_output, audio_output1)
            yield stream, gr.Textbox(visible=True), gr.Textbox(visible=True), gr.Audio(
                visible=True
            ), gr.Audio(visible=False)

    yield (stream, asr_output_str, text_str1, audio_output, audio_output1)


# ------------------------
# Executable Script
# ------------------------
api = HfApi()
nltk.download("averaged_perceptron_tagger_eng")
start_warmup()
default_instruct=(
    "You are a helpful and friendly AI "
    "assistant. "
    "You are polite, respectful, and aim to "
    "provide concise and complete responses of "
    "less than 15 words."
)
import pandas as pd
examples = pd.DataFrame([
    ["General Purpose Conversation", default_instruct],
    ["Translation", "You are a translator. Translate user text into English."],
    ["General Purpose Conversation with Disfluencies", "Please reply to user with lot of filler words like ummm, so"],
    ["Summarization", "You are summarizer. Summarize user's utterance."]
], columns=["Task", "LLM Prompt"])
with gr.Blocks(
    title="E2E Spoken Dialog System",
) as demo:
    with gr.Row():
        gr.Markdown(
            """
            ## ESPnet-SDS
            Welcome to our unified web interface for various cascaded and
            E2E spoken dialogue systems built using ESPnet-SDS  toolkit,
            supporting real-time automated evaluation metrics, and
            human-in-the-loop feedback collection.

            For more details on how to use the app, refer to the [README]
            (https://github.com/siddhu001/espnet/tree/sds_demo_recipe/egs2/TEMPLATE/sds1#how-to-use).
        """
        )
    with gr.Row():
        with gr.Column(scale=1):
            user_audio = gr.Audio(
                sources=["microphone"],
                streaming=True,
                waveform_options=gr.WaveformOptions(sample_rate=16000),
            )
            input_text=gr.Textbox(
                label="LLM prompt",
                visible=True,
                interactive=True,
                value=default_instruct
            )
            with gr.Row():
                type_radio = gr.Radio(
                    choices=["Cascaded", "E2E"],
                    label="Choose type of Spoken Dialog:",
                    value="Cascaded",
                )
            with gr.Row():
                ASR_radio = gr.Radio(
                    choices=ASR_options,
                    label="Choose ASR:",
                    value=ASR_name,
                )
            with gr.Row():
                LLM_radio = gr.Radio(
                    choices=LLM_options,
                    label="Choose LLM:",
                    value=LLM_name,
                )
            with gr.Row():
                radio = gr.Radio(
                    choices=TTS_options,
                    label="Choose TTS:",
                    value=TTS_name,
                )
            with gr.Row():
                E2Eradio = gr.Radio(
                    choices=["mini-omni"],
                    label="Choose E2E model:",
                    value="mini-omni",
                    visible=False,
                )
            with gr.Row():
                feedback_btn = gr.Button(
                    value=(
                        "Please provide your feedback "
                        "after each system response below."
                    ),
                    visible=True,
                    interactive=False,
                    elem_id="button",
                )
            with gr.Row():
                natural_btn1 = gr.Button(
                    value="Very Natural", visible=False, interactive=False, scale=1
                )
                natural_btn2 = gr.Button(
                    value="Somewhat Awkward", visible=False, interactive=False, scale=1
                )
                natural_btn3 = gr.Button(
                    value="Very Awkward", visible=False, interactive=False, scale=1
                )
                natural_btn4 = gr.Button(
                    value="Unnatural", visible=False, interactive=False, scale=1
                )
            with gr.Row():
                relevant_btn1 = gr.Button(
                    value="Highly Relevant", visible=False, interactive=False, scale=1
                )
                relevant_btn2 = gr.Button(
                    value="Partially Relevant",
                    visible=False,
                    interactive=False,
                    scale=1,
                )
                relevant_btn3 = gr.Button(
                    value="Slightly Irrelevant",
                    visible=False,
                    interactive=False,
                    scale=1,
                )
                relevant_btn4 = gr.Button(
                    value="Completely Irrelevant",
                    visible=False,
                    interactive=False,
                    scale=1,
                )
        with gr.Column(scale=1):
            output_audio = gr.Audio(label="Output", autoplay=True, visible=True, interactive=False)
            output_audio1 = gr.Audio(label="Output1", autoplay=False, visible=False, interactive=False)
            output_asr_text = gr.Textbox(label="ASR output", interactive=False)
            output_text = gr.Textbox(label="LLM output", interactive=False)
            eval_radio = gr.Radio(
                choices=[
                    "Latency",
                    "TTS Intelligibility",
                    "TTS Speech Quality",
                    "ASR WER",
                    "Text Dialog Metrics",
                ],
                label="Choose Evaluation metrics:",
            )
            eval_radio_E2E = gr.Radio(
                choices=[
                    "Latency",
                    "TTS Intelligibility",
                    "TTS Speech Quality",
                    "Text Dialog Metrics",
                ],
                label="Choose Evaluation metrics:",
                visible=False,
            )
            output_eval_text = gr.Textbox(label="Evaluation Results")
            state = gr.State()
    gr.Markdown("### Example Prompts & Responses")
    gr.DataFrame(value=examples, headers=["Task", "LLM Prompt"], interactive=False)
    with gr.Row():
        privacy_text = gr.Textbox(
            label="Privacy Notice",
            interactive=False,
            value=(
                "By using this demo, you acknowledge that"
                "interactions with this dialog system are collected "
                "for research and improvement purposes. The data "
                "will only be used to enhance the performance and "
                "understanding of the system. If you have any "
                "concerns about data collection, please discontinue "
                "use."
            ),
        )

    btn_list = [
        natural_btn1,
        natural_btn2,
        natural_btn3,
        natural_btn4,
        relevant_btn1,
        relevant_btn2,
        relevant_btn3,
        relevant_btn4,
    ]
    natural_btn_list = [
        natural_btn1,
        natural_btn2,
        natural_btn3,
        natural_btn4,
    ]
    relevant_btn_list = [
        relevant_btn1,
        relevant_btn2,
        relevant_btn3,
        relevant_btn4,
    ]
    natural_response = gr.Textbox(
        label="natural_response", visible=False, interactive=False
    )
    diversity_response = gr.Textbox(
        label="diversity_response", visible=False, interactive=False
    )
    ip_address = gr.Textbox(label="ip_address", visible=False, interactive=False)
    callback.setup(
        [
            user_audio,
            output_asr_text,
            output_text,
            output_audio,
            output_audio1,
            type_radio,
            ASR_radio,
            LLM_radio,
            radio,
            E2Eradio,
            natural_response,
            diversity_response,
            ip_address,
        ],
        "flagged_data_points",
    )
    user_audio.stream(
        transcribe,
        inputs=[state, user_audio, radio, ASR_radio, LLM_radio, type_radio, input_text],
        outputs=[state, output_asr_text, output_text, output_audio, output_audio1],
    ).then(
        lambda *args: callback.flag(list(args)), [user_audio], None, preprocess=False
    )
    radio.change(
        fn=dialogue_model.handle_TTS_selection,
        inputs=[radio],
        outputs=[output_asr_text, output_text, output_audio],
    )
    LLM_radio.change(
        fn=dialogue_model.handle_LLM_selection,
        inputs=[LLM_radio],
        outputs=[output_asr_text, output_text, output_audio],
    )
    ASR_radio.change(
        fn=dialogue_model.handle_ASR_selection,
        inputs=[ASR_radio],
        outputs=[output_asr_text, output_text, output_audio],
    )
    eval_radio.change(
        fn=handle_eval_selection,
        inputs=[eval_radio, output_audio, output_text, output_audio1, output_asr_text],
        outputs=[eval_radio, output_eval_text],
    )
    eval_radio_E2E.change(
        fn=handle_eval_selection_E2E,
        inputs=[eval_radio_E2E, output_audio, output_text],
        outputs=[eval_radio_E2E, output_eval_text],
    )
    type_radio.change(
        fn=dialogue_model.handle_type_selection,
        inputs=[type_radio, radio, ASR_radio, LLM_radio],
        outputs=[
            radio,
            ASR_radio,
            LLM_radio,
            E2Eradio,
            output_asr_text,
            output_text,
            output_audio,
            eval_radio,
            eval_radio_E2E,
        ],
    )
    output_audio.play(
        flash_buttons, [], [natural_response, diversity_response] + btn_list
    ).then(
        lambda *args: callback.flag(list(args)),
        [
            user_audio,
            output_asr_text,
            output_text,
            output_audio,
            output_audio1,
            type_radio,
            ASR_radio,
            LLM_radio,
            radio,
            E2Eradio,
        ],
        None,
        preprocess=False,
    )
    natural_btn1.click(
        natural_vote1_last_response,
        [],
        [natural_response, ip_address] + natural_btn_list,
    ).then(
        lambda *args: callback.flag(list(args)),
        [
            user_audio,
            output_asr_text,
            output_text,
            output_audio,
            output_audio1,
            type_radio,
            ASR_radio,
            LLM_radio,
            radio,
            E2Eradio,
            natural_response,
            diversity_response,
            ip_address,
        ],
        None,
        preprocess=False,
    )
    natural_btn2.click(
        natural_vote2_last_response,
        [],
        [natural_response, ip_address] + natural_btn_list,
    ).then(
        lambda *args: callback.flag(list(args)),
        [
            user_audio,
            output_asr_text,
            output_text,
            output_audio,
            output_audio1,
            type_radio,
            ASR_radio,
            LLM_radio,
            radio,
            E2Eradio,
            natural_response,
            diversity_response,
            ip_address,
        ],
        None,
        preprocess=False,
    )
    natural_btn3.click(
        natural_vote3_last_response,
        [],
        [natural_response, ip_address] + natural_btn_list,
    ).then(
        lambda *args: callback.flag(list(args)),
        [
            user_audio,
            output_asr_text,
            output_text,
            output_audio,
            output_audio1,
            type_radio,
            ASR_radio,
            LLM_radio,
            radio,
            E2Eradio,
            natural_response,
            diversity_response,
            ip_address,
        ],
        None,
        preprocess=False,
    )
    natural_btn4.click(
        natural_vote4_last_response,
        [],
        [natural_response, ip_address] + natural_btn_list,
    ).then(
        lambda *args: callback.flag(list(args)),
        [
            user_audio,
            output_asr_text,
            output_text,
            output_audio,
            output_audio1,
            type_radio,
            ASR_radio,
            LLM_radio,
            radio,
            E2Eradio,
            natural_response,
            diversity_response,
            ip_address,
        ],
        None,
        preprocess=False,
    )
    relevant_btn1.click(
        relevant_vote1_last_response,
        [],
        [diversity_response, ip_address] + relevant_btn_list,
    ).then(
        lambda *args: callback.flag(list(args)),
        [
            user_audio,
            output_asr_text,
            output_text,
            output_audio,
            output_audio1,
            type_radio,
            ASR_radio,
            LLM_radio,
            radio,
            E2Eradio,
            natural_response,
            diversity_response,
            ip_address,
        ],
        None,
        preprocess=False,
    )
    relevant_btn2.click(
        relevant_vote2_last_response,
        [],
        [diversity_response, ip_address] + relevant_btn_list,
    ).then(
        lambda *args: callback.flag(list(args)),
        [
            user_audio,
            output_asr_text,
            output_text,
            output_audio,
            output_audio1,
            type_radio,
            ASR_radio,
            LLM_radio,
            radio,
            E2Eradio,
            natural_response,
            diversity_response,
            ip_address,
        ],
        None,
        preprocess=False,
    )
    relevant_btn3.click(
        relevant_vote3_last_response,
        [],
        [diversity_response, ip_address] + relevant_btn_list,
    ).then(
        lambda *args: callback.flag(list(args)),
        [
            user_audio,
            output_asr_text,
            output_text,
            output_audio,
            output_audio1,
            type_radio,
            ASR_radio,
            LLM_radio,
            radio,
            E2Eradio,
            natural_response,
            diversity_response,
            ip_address,
        ],
        None,
        preprocess=False,
    )
    relevant_btn4.click(
        relevant_vote4_last_response,
        [],
        [diversity_response, ip_address] + relevant_btn_list,
    ).then(
        lambda *args: callback.flag(list(args)),
        [
            user_audio,
            output_asr_text,
            output_text,
            output_audio,
            output_audio1,
            type_radio,
            ASR_radio,
            LLM_radio,
            radio,
            E2Eradio,
            natural_response,
            diversity_response,
            ip_address,
        ],
        None,
        preprocess=False,
    )
demo.queue(max_size=10, default_concurrency_limit=1)
demo.launch(share=True)