Spaces:
Running
on
L40S
Running
on
L40S
File size: 31,151 Bytes
0c97eed b9a6dd9 0c97eed b9a6dd9 94b0033 b9a6dd9 0c97eed b9a6dd9 0c97eed 24fbd43 b9a6dd9 bf1337a 0c97eed b9a6dd9 0c97eed b9a6dd9 0c97eed b9a6dd9 0c97eed b9a6dd9 0c97eed b9a6dd9 0c97eed b9a6dd9 1e42459 b9a6dd9 1e42459 b9a6dd9 1e42459 94b0033 b9a6dd9 629762f b9a6dd9 629762f b9a6dd9 629762f b9a6dd9 94b0033 b9a6dd9 94b0033 b9a6dd9 94b0033 b9a6dd9 94b0033 b9a6dd9 94b0033 0c97eed b9a6dd9 0c97eed b9a6dd9 71fd664 0c97eed b9a6dd9 0c97eed bf1337a b9a6dd9 bf1337a b9a6dd9 0c97eed b9a6dd9 71fd664 b9a6dd9 0c97eed b9a6dd9 0c97eed b9a6dd9 0c97eed b9a6dd9 0c97eed b9a6dd9 0c97eed b9a6dd9 0c97eed b9a6dd9 0c97eed b9a6dd9 bf4e9b3 aa88060 bf4e9b3 0c97eed b9a6dd9 71fd664 b9a6dd9 0c97eed b9a6dd9 1e42459 b9a6dd9 67ad39b b9a6dd9 96aa432 b9a6dd9 71fd664 b9a6dd9 6ebbb2b 0c97eed b9a6dd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 |
try:
import versa
except ImportError:
from subprocess import call
with open('versa.sh', 'rb') as file:
script = file.read()
rc = call(script, shell=True)
import os
import shutil
import time
from typing import Generator, Optional, Tuple
import gradio as gr
import nltk
import numpy as np
import torch
from huggingface_hub import HfApi
from pyscripts.utils.dialog_eval.ASR_WER import handle_espnet_ASR_WER
from pyscripts.utils.dialog_eval.human_feedback import (
natural_vote1_last_response,
natural_vote2_last_response,
natural_vote3_last_response,
natural_vote4_last_response,
relevant_vote1_last_response,
relevant_vote2_last_response,
relevant_vote3_last_response,
relevant_vote4_last_response,
)
from pyscripts.utils.dialog_eval.LLM_Metrics import (
DialoGPT_perplexity,
bert_score,
perplexity,
vert,
)
from pyscripts.utils.dialog_eval.TTS_intelligibility import (
handle_espnet_TTS_intelligibility,
)
from pyscripts.utils.dialog_eval.TTS_speech_quality import TTS_psuedomos
from espnet2.sds.espnet_model import ESPnetSDSModelInterface
# ------------------------
# Hyperparameters
# ------------------------
access_token = os.environ.get("HF_TOKEN")
ASR_name="pyf98/owsm_ctc_v3.1_1B"
LLM_name="meta-llama/Llama-3.2-1B-Instruct"
TTS_name="kan-bayashi/ljspeech_vits"
ASR_options="pyf98/owsm_ctc_v3.1_1B,espnet/owsm_ctc_v3.2_ft_1B,espnet/owsm_v3.1_ebf,librispeech_asr,whisper-large".split(",")
LLM_options="meta-llama/Llama-3.2-1B-Instruct,HuggingFaceTB/SmolLM2-1.7B-Instruct".split(",")
TTS_options="kan-bayashi/ljspeech_vits,kan-bayashi/libritts_xvector_vits,kan-bayashi/vctk_multi_spk_vits,ChatTTS".split(",")
Eval_options="Latency,TTS Intelligibility,TTS Speech Quality,ASR WER,Text Dialog Metrics"
upload_to_hub=None
dialogue_model = ESPnetSDSModelInterface(
ASR_name, LLM_name, TTS_name, "Cascaded", access_token
)
ASR_curr_name=None
LLM_curr_name=None
TTS_curr_name=None
latency_ASR = 0.0
latency_LM = 0.0
latency_TTS = 0.0
text_str = ""
asr_output_str = ""
vad_output = None
audio_output = None
audio_output1 = None
LLM_response_arr = []
total_response_arr = []
callback = gr.CSVLogger()
start_record_time = None
enable_btn = gr.Button(interactive=True, visible=True)
# ------------------------
# Function Definitions
# ------------------------
def handle_eval_selection(
option: str,
TTS_audio_output: str,
LLM_Output: str,
ASR_audio_output: str,
ASR_transcript: str,
):
"""
Handles the evaluation of a selected metric based on
user input and provided outputs.
This function evaluates different aspects of a
casacaded conversational AI pipeline, such as:
Latency, TTS intelligibility, TTS speech quality,
ASR WER, and text dialog metrics.
It is designed to integrate with Gradio via
multiple yield statements,
allowing updates to be displayed in real time.
Parameters:
----------
option : str
The evaluation metric selected by the user.
Supported options include:
- "Latency"
- "TTS Intelligibility"
- "TTS Speech Quality"
- "ASR WER"
- "Text Dialog Metrics"
TTS_audio_output : np.ndarray
The audio output generated by the TTS module for evaluation.
LLM_Output : str
The text output generated by the LLM module for evaluation.
ASR_audio_output : np.ndarray
The audio input/output used for ASR evaluation.
ASR_transcript : str
The transcript generated by the ASR module for evaluation.
Returns:
-------
str
A string representation of the evaluation results.
The specific result depends on the selected evaluation metric:
- "Latency": Latencies of ASR, LLM, and TTS modules.
- "TTS Intelligibility": A range of scores indicating how intelligible
the TTS audio output is based on different reference ASR models.
- "TTS Speech Quality": A range of scores representing the
speech quality of the TTS audio output.
- "ASR WER": The Word Error Rate (WER) of the ASR output
based on different judge ASR models.
- "Text Dialog Metrics": A combination of perplexity,
diversity metrics, and relevance scores for the dialog.
Raises:
------
ValueError
If the `option` parameter does not match any supported evaluation metric.
Example:
-------
>>> result = handle_eval_selection(
option="Latency",
TTS_audio_output=audio_array,
LLM_Output="Generated response",
ASR_audio_output=audio_input,
ASR_transcript="Expected transcript"
)
>>> print(result)
"ASR Latency: 0.14
LLM Latency: 0.42
TTS Latency: 0.21"
"""
global LLM_response_arr
global total_response_arr
yield (option, gr.Textbox(visible=True))
if option == "Latency":
text = (
f"ASR Latency: {latency_ASR:.2f}\n"
f"LLM Latency: {latency_LM:.2f}\n"
f"TTS Latency: {latency_TTS:.2f}"
)
yield (None, text)
elif option == "TTS Intelligibility":
yield (None, handle_espnet_TTS_intelligibility(TTS_audio_output, LLM_Output))
elif option == "TTS Speech Quality":
yield (None, TTS_psuedomos(TTS_audio_output))
elif option == "ASR WER":
yield (None, handle_espnet_ASR_WER(ASR_audio_output, ASR_transcript))
elif option == "Text Dialog Metrics":
yield (
None,
perplexity(LLM_Output.replace("\n", " "))
+ vert(LLM_response_arr)
+ bert_score(total_response_arr)
+ DialoGPT_perplexity(
ASR_transcript.replace("\n", " "), LLM_Output.replace("\n", " ")
),
)
elif option is None:
return
else:
raise ValueError(f"Unknown option: {option}")
def handle_eval_selection_E2E(
option: str,
TTS_audio_output: str,
LLM_Output: str,
):
"""
Handles the evaluation of a selected metric based on user input
and provided outputs.
This function evaluates different aspects of an E2E
conversational AI model, such as:
Latency, TTS intelligibility, TTS speech quality, and
text dialog metrics.
It is designed to integrate with Gradio via
multiple yield statements,
allowing updates to be displayed in real time.
Parameters:
----------
option : str
The evaluation metric selected by the user.
Supported options include:
- "Latency"
- "TTS Intelligibility"
- "TTS Speech Quality"
- "Text Dialog Metrics"
TTS_audio_output : np.ndarray
The audio output generated by the TTS module for evaluation.
LLM_Output : str
The text output generated by the LLM module for evaluation.
Returns:
-------
str
A string representation of the evaluation results.
The specific result depends on the selected evaluation metric:
- "Latency": Latency of the entire system.
- "TTS Intelligibility": A range of scores indicating how intelligible the
TTS audio output is based on different reference ASR models.
- "TTS Speech Quality": A range of scores representing the
speech quality of the TTS audio output.
- "Text Dialog Metrics": A combination of perplexity and
diversity metrics for the dialog.
Raises:
------
ValueError
If the `option` parameter does not match any supported evaluation metric.
Example:
-------
>>> result = handle_eval_selection(
option="Latency",
TTS_audio_output=audio_array,
LLM_Output="Generated response",
)
>>> print(result)
"Total Latency: 2.34"
"""
global LLM_response_arr
global total_response_arr
yield (option, gr.Textbox(visible=True))
if option == "Latency":
text = f"Total Latency: {latency_TTS:.2f}"
yield (None, text)
elif option == "TTS Intelligibility":
yield (None, handle_espnet_TTS_intelligibility(TTS_audio_output, LLM_Output))
elif option == "TTS Speech Quality":
yield (None, TTS_psuedomos(TTS_audio_output))
elif option == "Text Dialog Metrics":
yield (None, perplexity(LLM_Output.replace("\n", " ")) + vert(LLM_response_arr))
elif option is None:
return
else:
raise ValueError(f"Unknown option: {option}")
def start_warmup():
"""
Initializes and warms up the dialogue and evaluation model.
This function is designed to ensure that all
components of the dialogue model are pre-loaded
and ready for execution, avoiding delays during runtime.
"""
global dialogue_model
global ASR_options
global LLM_options
global TTS_options
global ASR_name
global LLM_name
global TTS_name
remove=0
for opt_count in range(len(ASR_options)):
opt_count-=remove
if opt_count>=len(ASR_options):
break
print(opt_count)
print(ASR_options)
opt = ASR_options[opt_count]
try:
for _ in dialogue_model.handle_ASR_selection(opt):
continue
except Exception:
print("Removing " + opt + " from ASR options since it cannot be loaded.")
ASR_options = ASR_options[:opt_count] + ASR_options[(opt_count + 1) :]
remove+=1
if opt == ASR_name:
ASR_name = ASR_options[0]
for opt_count in range(len(LLM_options)):
opt = LLM_options[opt_count]
try:
for _ in dialogue_model.handle_LLM_selection(opt):
continue
except Exception:
print("Removing " + opt + " from LLM options since it cannot be loaded.")
LLM_options = LLM_options[:opt_count] + LLM_options[(opt_count + 1) :]
if opt == LLM_name:
LLM_name = LLM_options[0]
for opt_count in range(len(TTS_options)):
opt = TTS_options[opt_count]
try:
for _ in dialogue_model.handle_TTS_selection(opt):
continue
except Exception:
print("Removing " + opt + " from TTS options since it cannot be loaded.")
TTS_options = TTS_options[:opt_count] + TTS_options[(opt_count + 1) :]
if opt == TTS_name:
TTS_name = TTS_options[0]
dialogue_model.handle_E2E_selection()
dialogue_model.client = None
for _ in dialogue_model.handle_TTS_selection(TTS_name):
continue
for _ in dialogue_model.handle_ASR_selection(ASR_name):
continue
for _ in dialogue_model.handle_LLM_selection(LLM_name):
continue
dummy_input = (
torch.randn(
(3000),
dtype=getattr(torch, "float16"),
device="cpu",
)
.cpu()
.numpy()
)
dummy_text = "This is dummy text"
for opt in Eval_options:
handle_eval_selection(opt, dummy_input, dummy_text, dummy_input, dummy_text)
def flash_buttons():
"""
Enables human feedback buttons after displaying system output.
"""
btn_updates = (enable_btn,) * 8
yield (
"",
"",
) + btn_updates
def transcribe(
stream: np.ndarray,
new_chunk: Tuple[int, np.ndarray],
TTS_option: str,
ASR_option: str,
LLM_option: str,
type_option: str,
input_text: str,
):
"""
Processes and transcribes an audio stream in real-time.
This function handles the transcription of audio input
and its transformation through a cascaded
or E2E conversational AI system.
It dynamically updates the transcription, text generation,
and synthesized speech output, while managing global states and latencies.
Args:
stream: The current audio stream buffer.
`None` if the stream is being reset (e.g., after user refresh).
new_chunk: A tuple containing:
- `sr`: Sample rate of the new audio chunk.
- `y`: New audio data chunk.
TTS_option: Selected TTS model option.
ASR_option: Selected ASR model option.
LLM_option: Selected LLM model option.
type_option: Type of system ("Cascaded" or "E2E").
Yields:
Tuple[Optional[np.ndarray], Optional[str], Optional[str],
Optional[Tuple[int, np.ndarray]], Optional[Tuple[int, np.ndarray]]]:
A tuple containing:
- Updated stream buffer.
- ASR output text.
- Generated LLM output text.
- Audio output as a tuple of sample rate and audio waveform.
- User input audio as a tuple of sample rate and audio waveform.
Notes:
- Resets the session if the transcription exceeds 5 minutes.
- Updates the Gradio interface elements dynamically.
- Manages latencies.
"""
sr, y = new_chunk
global text_str
global chat
global user_role
global audio_output
global audio_output1
global vad_output
global asr_output_str
global start_record_time
global sids
global spembs
global latency_ASR
global latency_LM
global latency_TTS
global LLM_response_arr
global total_response_arr
if stream is None:
# Handle user refresh
for (
_,
_,
_,
_,
asr_output_box,
text_box,
audio_box,
_,
_,
) in dialogue_model.handle_type_selection(
type_option, TTS_option, ASR_option, LLM_option
):
gr.Info("The models are being reloaded due to a browser refresh.")
yield (stream, asr_output_box, text_box, audio_box, gr.Audio(visible=False))
stream = y
text_str = ""
audio_output = None
audio_output1 = None
else:
stream = np.concatenate((stream, y))
# import pdb;pdb.set_trace()
dialogue_model.chat.init_chat(
{
"role": "system",
"content": (
input_text
),
}
)
(
asr_output_str,
text_str,
audio_output,
audio_output1,
latency_ASR,
latency_LM,
latency_TTS,
stream,
change,
) = dialogue_model(
y,
sr,
stream,
asr_output_str,
text_str,
audio_output,
audio_output1,
latency_ASR,
latency_LM,
latency_TTS,
)
text_str1 = text_str
if change:
print("Output changed")
if asr_output_str != "":
total_response_arr.append(asr_output_str.replace("\n", " "))
LLM_response_arr.append(text_str.replace("\n", " "))
total_response_arr.append(text_str.replace("\n", " "))
if (text_str != "") and (start_record_time is None):
start_record_time = time.time()
elif start_record_time is not None:
current_record_time = time.time()
if current_record_time - start_record_time > 300:
gr.Info(
"Conversations are limited to 5 minutes. "
"The session will restart in approximately 60 seconds. "
"Please wait for the demo to reset. "
"Close this message once you have read it.",
duration=None,
)
yield stream, gr.Textbox(visible=False), gr.Textbox(
visible=False
), gr.Audio(visible=False), gr.Audio(visible=False)
if upload_to_hub is not None:
api.upload_folder(
folder_path="flagged_data_points",
path_in_repo="checkpoint_" + str(start_record_time),
repo_id=upload_to_hub,
repo_type="dataset",
token=access_token,
)
dialogue_model.chat.buffer = []
text_str = ""
audio_output = None
audio_output1 = None
asr_output_str = ""
start_record_time = None
LLM_response_arr = []
total_response_arr = []
shutil.rmtree("flagged_data_points")
os.mkdir("flagged_data_points")
yield (stream, asr_output_str, text_str1, audio_output, audio_output1)
yield stream, gr.Textbox(visible=True), gr.Textbox(visible=True), gr.Audio(
visible=True
), gr.Audio(visible=False)
yield (stream, asr_output_str, text_str1, audio_output, audio_output1)
# ------------------------
# Executable Script
# ------------------------
api = HfApi()
nltk.download("averaged_perceptron_tagger_eng")
start_warmup()
default_instruct=(
"You are a helpful and friendly AI "
"assistant. "
"You are polite, respectful, and aim to "
"provide concise and complete responses of "
"less than 15 words."
)
import pandas as pd
examples = pd.DataFrame([
["General Purpose Conversation", default_instruct],
["Translation", "You are a translator. Translate user text into English."],
["General Purpose Conversation with Disfluencies", "Please reply to user with lot of filler words like ummm, so"],
["Summarization", "You are summarizer. Summarize user's utterance."]
], columns=["Task", "LLM Prompt"])
with gr.Blocks(
title="E2E Spoken Dialog System",
) as demo:
with gr.Row():
gr.Markdown(
"""
## ESPnet-SDS
Welcome to our unified web interface for various cascaded and
E2E spoken dialogue systems built using ESPnet-SDS toolkit,
supporting real-time automated evaluation metrics, and
human-in-the-loop feedback collection.
For more details on how to use the app, refer to the [README]
(https://github.com/siddhu001/espnet/tree/sds_demo_recipe/egs2/TEMPLATE/sds1#how-to-use).
"""
)
with gr.Row():
with gr.Column(scale=1):
user_audio = gr.Audio(
sources=["microphone"],
streaming=True,
waveform_options=gr.WaveformOptions(sample_rate=16000),
)
input_text=gr.Textbox(
label="LLM prompt",
visible=True,
interactive=True,
value=default_instruct
)
with gr.Row():
type_radio = gr.Radio(
choices=["Cascaded", "E2E"],
label="Choose type of Spoken Dialog:",
value="Cascaded",
)
with gr.Row():
ASR_radio = gr.Radio(
choices=ASR_options,
label="Choose ASR:",
value=ASR_name,
)
with gr.Row():
LLM_radio = gr.Radio(
choices=LLM_options,
label="Choose LLM:",
value=LLM_name,
)
with gr.Row():
radio = gr.Radio(
choices=TTS_options,
label="Choose TTS:",
value=TTS_name,
)
with gr.Row():
E2Eradio = gr.Radio(
choices=["mini-omni"],
label="Choose E2E model:",
value="mini-omni",
visible=False,
)
with gr.Row():
feedback_btn = gr.Button(
value=(
"Please provide your feedback "
"after each system response below."
),
visible=True,
interactive=False,
elem_id="button",
)
with gr.Row():
natural_btn1 = gr.Button(
value="Very Natural", visible=False, interactive=False, scale=1
)
natural_btn2 = gr.Button(
value="Somewhat Awkward", visible=False, interactive=False, scale=1
)
natural_btn3 = gr.Button(
value="Very Awkward", visible=False, interactive=False, scale=1
)
natural_btn4 = gr.Button(
value="Unnatural", visible=False, interactive=False, scale=1
)
with gr.Row():
relevant_btn1 = gr.Button(
value="Highly Relevant", visible=False, interactive=False, scale=1
)
relevant_btn2 = gr.Button(
value="Partially Relevant",
visible=False,
interactive=False,
scale=1,
)
relevant_btn3 = gr.Button(
value="Slightly Irrelevant",
visible=False,
interactive=False,
scale=1,
)
relevant_btn4 = gr.Button(
value="Completely Irrelevant",
visible=False,
interactive=False,
scale=1,
)
with gr.Column(scale=1):
output_audio = gr.Audio(label="Output", autoplay=True, visible=True, interactive=False)
output_audio1 = gr.Audio(label="Output1", autoplay=False, visible=False, interactive=False)
output_asr_text = gr.Textbox(label="ASR output", interactive=False)
output_text = gr.Textbox(label="LLM output", interactive=False)
eval_radio = gr.Radio(
choices=[
"Latency",
"TTS Intelligibility",
"TTS Speech Quality",
"ASR WER",
"Text Dialog Metrics",
],
label="Choose Evaluation metrics:",
)
eval_radio_E2E = gr.Radio(
choices=[
"Latency",
"TTS Intelligibility",
"TTS Speech Quality",
"Text Dialog Metrics",
],
label="Choose Evaluation metrics:",
visible=False,
)
output_eval_text = gr.Textbox(label="Evaluation Results")
state = gr.State()
gr.Markdown("### Example Prompts & Responses")
gr.DataFrame(value=examples, headers=["Task", "LLM Prompt"], interactive=False)
with gr.Row():
privacy_text = gr.Textbox(
label="Privacy Notice",
interactive=False,
value=(
"By using this demo, you acknowledge that"
"interactions with this dialog system are collected "
"for research and improvement purposes. The data "
"will only be used to enhance the performance and "
"understanding of the system. If you have any "
"concerns about data collection, please discontinue "
"use."
),
)
btn_list = [
natural_btn1,
natural_btn2,
natural_btn3,
natural_btn4,
relevant_btn1,
relevant_btn2,
relevant_btn3,
relevant_btn4,
]
natural_btn_list = [
natural_btn1,
natural_btn2,
natural_btn3,
natural_btn4,
]
relevant_btn_list = [
relevant_btn1,
relevant_btn2,
relevant_btn3,
relevant_btn4,
]
natural_response = gr.Textbox(
label="natural_response", visible=False, interactive=False
)
diversity_response = gr.Textbox(
label="diversity_response", visible=False, interactive=False
)
ip_address = gr.Textbox(label="ip_address", visible=False, interactive=False)
callback.setup(
[
user_audio,
output_asr_text,
output_text,
output_audio,
output_audio1,
type_radio,
ASR_radio,
LLM_radio,
radio,
E2Eradio,
natural_response,
diversity_response,
ip_address,
],
"flagged_data_points",
)
user_audio.stream(
transcribe,
inputs=[state, user_audio, radio, ASR_radio, LLM_radio, type_radio, input_text],
outputs=[state, output_asr_text, output_text, output_audio, output_audio1],
).then(
lambda *args: callback.flag(list(args)), [user_audio], None, preprocess=False
)
radio.change(
fn=dialogue_model.handle_TTS_selection,
inputs=[radio],
outputs=[output_asr_text, output_text, output_audio],
)
LLM_radio.change(
fn=dialogue_model.handle_LLM_selection,
inputs=[LLM_radio],
outputs=[output_asr_text, output_text, output_audio],
)
ASR_radio.change(
fn=dialogue_model.handle_ASR_selection,
inputs=[ASR_radio],
outputs=[output_asr_text, output_text, output_audio],
)
eval_radio.change(
fn=handle_eval_selection,
inputs=[eval_radio, output_audio, output_text, output_audio1, output_asr_text],
outputs=[eval_radio, output_eval_text],
)
eval_radio_E2E.change(
fn=handle_eval_selection_E2E,
inputs=[eval_radio_E2E, output_audio, output_text],
outputs=[eval_radio_E2E, output_eval_text],
)
type_radio.change(
fn=dialogue_model.handle_type_selection,
inputs=[type_radio, radio, ASR_radio, LLM_radio],
outputs=[
radio,
ASR_radio,
LLM_radio,
E2Eradio,
output_asr_text,
output_text,
output_audio,
eval_radio,
eval_radio_E2E,
],
)
output_audio.play(
flash_buttons, [], [natural_response, diversity_response] + btn_list
).then(
lambda *args: callback.flag(list(args)),
[
user_audio,
output_asr_text,
output_text,
output_audio,
output_audio1,
type_radio,
ASR_radio,
LLM_radio,
radio,
E2Eradio,
],
None,
preprocess=False,
)
natural_btn1.click(
natural_vote1_last_response,
[],
[natural_response, ip_address] + natural_btn_list,
).then(
lambda *args: callback.flag(list(args)),
[
user_audio,
output_asr_text,
output_text,
output_audio,
output_audio1,
type_radio,
ASR_radio,
LLM_radio,
radio,
E2Eradio,
natural_response,
diversity_response,
ip_address,
],
None,
preprocess=False,
)
natural_btn2.click(
natural_vote2_last_response,
[],
[natural_response, ip_address] + natural_btn_list,
).then(
lambda *args: callback.flag(list(args)),
[
user_audio,
output_asr_text,
output_text,
output_audio,
output_audio1,
type_radio,
ASR_radio,
LLM_radio,
radio,
E2Eradio,
natural_response,
diversity_response,
ip_address,
],
None,
preprocess=False,
)
natural_btn3.click(
natural_vote3_last_response,
[],
[natural_response, ip_address] + natural_btn_list,
).then(
lambda *args: callback.flag(list(args)),
[
user_audio,
output_asr_text,
output_text,
output_audio,
output_audio1,
type_radio,
ASR_radio,
LLM_radio,
radio,
E2Eradio,
natural_response,
diversity_response,
ip_address,
],
None,
preprocess=False,
)
natural_btn4.click(
natural_vote4_last_response,
[],
[natural_response, ip_address] + natural_btn_list,
).then(
lambda *args: callback.flag(list(args)),
[
user_audio,
output_asr_text,
output_text,
output_audio,
output_audio1,
type_radio,
ASR_radio,
LLM_radio,
radio,
E2Eradio,
natural_response,
diversity_response,
ip_address,
],
None,
preprocess=False,
)
relevant_btn1.click(
relevant_vote1_last_response,
[],
[diversity_response, ip_address] + relevant_btn_list,
).then(
lambda *args: callback.flag(list(args)),
[
user_audio,
output_asr_text,
output_text,
output_audio,
output_audio1,
type_radio,
ASR_radio,
LLM_radio,
radio,
E2Eradio,
natural_response,
diversity_response,
ip_address,
],
None,
preprocess=False,
)
relevant_btn2.click(
relevant_vote2_last_response,
[],
[diversity_response, ip_address] + relevant_btn_list,
).then(
lambda *args: callback.flag(list(args)),
[
user_audio,
output_asr_text,
output_text,
output_audio,
output_audio1,
type_radio,
ASR_radio,
LLM_radio,
radio,
E2Eradio,
natural_response,
diversity_response,
ip_address,
],
None,
preprocess=False,
)
relevant_btn3.click(
relevant_vote3_last_response,
[],
[diversity_response, ip_address] + relevant_btn_list,
).then(
lambda *args: callback.flag(list(args)),
[
user_audio,
output_asr_text,
output_text,
output_audio,
output_audio1,
type_radio,
ASR_radio,
LLM_radio,
radio,
E2Eradio,
natural_response,
diversity_response,
ip_address,
],
None,
preprocess=False,
)
relevant_btn4.click(
relevant_vote4_last_response,
[],
[diversity_response, ip_address] + relevant_btn_list,
).then(
lambda *args: callback.flag(list(args)),
[
user_audio,
output_asr_text,
output_text,
output_audio,
output_audio1,
type_radio,
ASR_radio,
LLM_radio,
radio,
E2Eradio,
natural_response,
diversity_response,
ip_address,
],
None,
preprocess=False,
)
demo.queue(max_size=10, default_concurrency_limit=1)
demo.launch(share=True)
|