File size: 5,257 Bytes
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from typing import Tuple

import numpy as np

from espnet2.sds.utils.utils import int2float


def handle_espnet_ASR_WER(
    ASR_audio_output: Tuple[int, np.ndarray], ASR_transcript: str
) -> str:
    """
    Compute and return Word Error Rate (WER) and Character Error Rate (CER) metrics
    for multiple judge ASR systems (ESPnet, OWSM, Whisper) using the Versa library.

    This function performs the following:
        1. Imports necessary metrics and setup functions from Versa.
        2. Prepares configuration arguments for each ASR system (ESPnet, OWSM, Whisper).
        3. Runs the Levenshtein-based WER/CER calculations.
        4. Returns a formatted string summarizing WER and CER
        results for reference produced by each ASR system.

    Args:
        ASR_audio_output (tuple):
            A tuple where:
                - The first element is the frame rate.
                - The second element is the audio signal (NumPy array).
        ASR_transcript (str):
            The transcript produced by the ASR model in the cascaded
            conversational AI pipeline.

    Returns:
        str:
            A formatted string showing the WER and CER percentages
            for ESPnet, OWSM, and Whisper. Example output:

            "ESPnet WER: 10.50
             ESPnet CER: 7.20
             OWSM WER: 11.30
             OWSM CER: 8.00
             Whisper WER: 9.25
             Whisper CER: 6.50"

    Raises:
        ImportError:
            If Versa is not installed or cannot be imported.

    Example:
        >>> asr_audio_output = (16000, audio_array)
        >>> asr_transcript = "This is the ASR transcript."
        >>> result = handle_espnet_ASR_WER(asr_audio_output, asr_transcript)
        >>> print(result)
        "ESPnet WER: 10.50
         ESPnet CER: 7.20
         OWSM WER: 11.30
         OWSM CER: 8.00
         Whisper WER: 9.25
         Whisper CER: 6.50"
    """
    try:
        from versa import (
            espnet_levenshtein_metric,
            espnet_wer_setup,
            owsm_levenshtein_metric,
            owsm_wer_setup,
            whisper_levenshtein_metric,
            whisper_wer_setup,
        )
    except Exception as e:
        print("Error: Versa is not properly installed.")
        raise e
    score_modules_espnet = {
        "module": espnet_levenshtein_metric,
        "args": espnet_wer_setup(
            model_tag="default",
            beam_size=1,
            text_cleaner="whisper_en",
            use_gpu=True,
        ),
    }
    dict1 = score_modules_espnet["module"](
        score_modules_espnet["args"],
        int2float(ASR_audio_output[1]),
        ASR_transcript,
        ASR_audio_output[0],
    )
    espnet_wer = (
        dict1["espnet_wer_delete"]
        + dict1["espnet_wer_insert"]
        + dict1["espnet_wer_replace"]
    ) / (
        dict1["espnet_wer_insert"]
        + dict1["espnet_wer_replace"]
        + dict1["espnet_wer_equal"]
    )
    espnet_cer = (
        dict1["espnet_cer_delete"]
        + dict1["espnet_cer_insert"]
        + dict1["espnet_cer_replace"]
    ) / (
        dict1["espnet_cer_insert"]
        + dict1["espnet_cer_replace"]
        + dict1["espnet_cer_equal"]
    )
    score_modules_owsm = {
        "module": owsm_levenshtein_metric,
        "args": owsm_wer_setup(
            model_tag="default",
            beam_size=1,
            text_cleaner="whisper_en",
            use_gpu=True,
        ),
    }
    dict1 = score_modules_owsm["module"](
        score_modules_owsm["args"],
        int2float(ASR_audio_output[1]),
        ASR_transcript,
        ASR_audio_output[0],
    )
    owsm_wer = (
        dict1["owsm_wer_delete"] + dict1["owsm_wer_insert"] + dict1["owsm_wer_replace"]
    ) / (dict1["owsm_wer_insert"] + dict1["owsm_wer_replace"] + dict1["owsm_wer_equal"])
    owsm_cer = (
        dict1["owsm_cer_delete"] + dict1["owsm_cer_insert"] + dict1["owsm_cer_replace"]
    ) / (dict1["owsm_cer_insert"] + dict1["owsm_cer_replace"] + dict1["owsm_cer_equal"])
    score_modules_whisper = {
        "module": whisper_levenshtein_metric,
        "args": whisper_wer_setup(
            model_tag="default",
            beam_size=1,
            text_cleaner="whisper_en",
            use_gpu=True,
        ),
    }
    dict1 = score_modules_whisper["module"](
        score_modules_whisper["args"],
        int2float(ASR_audio_output[1]),
        ASR_transcript,
        ASR_audio_output[0],
    )
    whisper_wer = (
        dict1["whisper_wer_delete"]
        + dict1["whisper_wer_insert"]
        + dict1["whisper_wer_replace"]
    ) / (
        dict1["whisper_wer_insert"]
        + dict1["whisper_wer_replace"]
        + dict1["whisper_wer_equal"]
    )
    whisper_cer = (
        dict1["whisper_cer_delete"]
        + dict1["whisper_cer_insert"]
        + dict1["whisper_cer_replace"]
    ) / (
        dict1["whisper_cer_insert"]
        + dict1["whisper_cer_replace"]
        + dict1["whisper_cer_equal"]
    )
    return (
        f"ESPnet WER: {espnet_wer*100:.2f}\n"
        f"ESPnet CER: {espnet_cer*100:.2f}\n"
        f"OWSM WER: {owsm_wer*100:.2f}\n"
        f"OWSM CER: {owsm_cer*100:.2f}\n"
        f"Whisper WER: {whisper_wer*100:.2f}\n"
        f"Whisper CER: {whisper_cer*100:.2f}"
    )