Spaces:
Sleeping
Sleeping
buzzCraft
commited on
Commit
•
182f05f
1
Parent(s):
291bc70
Delete extractor.py
Browse files- extractor.py +0 -560
extractor.py
DELETED
@@ -1,560 +0,0 @@
|
|
1 |
-
from typing import Optional
|
2 |
-
|
3 |
-
from langchain.chains import create_extraction_chain_pydantic
|
4 |
-
from langchain_core.prompts import ChatPromptTemplate
|
5 |
-
from langchain.chains import create_extraction_chain
|
6 |
-
from copy import deepcopy
|
7 |
-
from langchain_openai import ChatOpenAI
|
8 |
-
from langchain_community.utilities import SQLDatabase
|
9 |
-
import os
|
10 |
-
import difflib
|
11 |
-
import ast
|
12 |
-
import json
|
13 |
-
import re
|
14 |
-
from thefuzz import process
|
15 |
-
# Set up logging
|
16 |
-
import logging
|
17 |
-
|
18 |
-
from dotenv import load_dotenv
|
19 |
-
|
20 |
-
load_dotenv(".env")
|
21 |
-
|
22 |
-
logging.basicConfig(level=logging.INFO)
|
23 |
-
# Save the log to a file
|
24 |
-
handler = logging.FileHandler('extractor.log')
|
25 |
-
logger = logging.getLogger(__name__)
|
26 |
-
|
27 |
-
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
|
28 |
-
# os.environ["ANTHROPIC_API_KEY"] = os.getenv('ANTHROPIC_API_KEY')
|
29 |
-
|
30 |
-
if os.getenv('LANGSMITH'):
|
31 |
-
os.environ['LANGCHAIN_TRACING_V2'] = 'true'
|
32 |
-
os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
|
33 |
-
os.environ[
|
34 |
-
'LANGCHAIN_API_KEY'] = os.getenv("LANGSMITH_API_KEY")
|
35 |
-
os.environ['LANGCHAIN_PROJECT'] = os.getenv('LANGSMITH_PROJECT')
|
36 |
-
db_uri = os.getenv('DATABASE_PATH')
|
37 |
-
db_uri = f"sqlite:///{db_uri}"
|
38 |
-
db = SQLDatabase.from_uri(db_uri)
|
39 |
-
|
40 |
-
# from langchain_anthropic import ChatAnthropic
|
41 |
-
class Extractor():
|
42 |
-
# llm = ChatOpenAI(model_name="gpt-4-0125-preview", temperature=0)
|
43 |
-
#gpt-3.5-turbo
|
44 |
-
def __init__(self, model="gpt-3.5-turbo-0125", schema_config=None, custom_extractor_prompt=None):
|
45 |
-
# model = "gpt-4-0125-preview"
|
46 |
-
if custom_extractor_prompt:
|
47 |
-
cust_promt = ChatPromptTemplate.from_template(custom_extractor_prompt)
|
48 |
-
|
49 |
-
self.llm = ChatOpenAI(model=model, temperature=0)
|
50 |
-
# self.llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
|
51 |
-
self.schema = schema_config or {}
|
52 |
-
self.chain = create_extraction_chain(self.schema, self.llm, prompt=cust_promt)
|
53 |
-
|
54 |
-
def extract(self, query):
|
55 |
-
return self.chain.invoke(query)
|
56 |
-
|
57 |
-
|
58 |
-
class Retriever():
|
59 |
-
def __init__(self, db, config):
|
60 |
-
self.db = db
|
61 |
-
self.config = config
|
62 |
-
self.table = config.get('db_table')
|
63 |
-
self.column = config.get('db_column')
|
64 |
-
self.pk_column = config.get('pk_column')
|
65 |
-
self.numeric = config.get('numeric', False)
|
66 |
-
self.response = []
|
67 |
-
self.query = f"SELECT {self.column} FROM {self.table}"
|
68 |
-
self.augmented_table = config.get('augmented_table', None)
|
69 |
-
self.augmented_column = config.get('augmented_column', None)
|
70 |
-
self.augmented_fk = config.get('augmented_fk', None)
|
71 |
-
|
72 |
-
def query_as_list(self):
|
73 |
-
# Execute the query
|
74 |
-
response = self.db.run(self.query)
|
75 |
-
response = [el for sub in ast.literal_eval(response) for el in sub if el]
|
76 |
-
if not self.numeric:
|
77 |
-
response = [re.sub(r"\b\d+\b", "", string).strip() for string in response]
|
78 |
-
self.response = list(set(response))
|
79 |
-
# print(self.response)
|
80 |
-
return self.response
|
81 |
-
|
82 |
-
def get_augmented_items(self, prompt):
|
83 |
-
if self.augmented_table is None:
|
84 |
-
return None
|
85 |
-
else:
|
86 |
-
# Construct the query to search for the prompt in the augmented table
|
87 |
-
query = f"SELECT {self.augmented_fk} FROM {self.augmented_table} WHERE LOWER({self.augmented_column}) = LOWER('{prompt}')"
|
88 |
-
|
89 |
-
# Execute the query
|
90 |
-
fk_response = self.db.run(query)
|
91 |
-
if fk_response:
|
92 |
-
# Extract the FK value
|
93 |
-
fk_response = ast.literal_eval(fk_response)
|
94 |
-
fk_value = fk_response[0][0]
|
95 |
-
query = f"SELECT {self.column} FROM {self.table} WHERE {self.pk_column} = {fk_value}"
|
96 |
-
# Execute the query
|
97 |
-
matching_response = self.db.run(query)
|
98 |
-
# Extract the matching response
|
99 |
-
matching_response = ast.literal_eval(matching_response)
|
100 |
-
matching_response = matching_response[0][0]
|
101 |
-
return matching_response
|
102 |
-
else:
|
103 |
-
return None
|
104 |
-
|
105 |
-
def find_close_matches(self, target_string, n=3, method="difflib", threshold=70):
|
106 |
-
"""
|
107 |
-
Find and return the top n close matches to target_string in the database query results.
|
108 |
-
|
109 |
-
Args:
|
110 |
-
- target_string (str): The string to match against the database results.
|
111 |
-
- n (int): Number of top matches to return.
|
112 |
-
|
113 |
-
Returns:
|
114 |
-
- list of tuples: Each tuple contains a match and its score.
|
115 |
-
"""
|
116 |
-
# Ensure we have the response list populated
|
117 |
-
if not self.response:
|
118 |
-
self.query_as_list()
|
119 |
-
|
120 |
-
# Find top n close matches
|
121 |
-
if method == "fuzzy":
|
122 |
-
# Use the fuzzy_string method to get matches and their scores
|
123 |
-
# If the threshold is met, return the best match; otherwise, return all matches meeting the threshold
|
124 |
-
top_matches = self.fuzzy_string(target_string, limit=n, threshold=threshold)
|
125 |
-
|
126 |
-
|
127 |
-
else:
|
128 |
-
# Use difflib's get_close_matches to get the top n matches
|
129 |
-
top_matches = difflib.get_close_matches(target_string, self.response, n=n, cutoff=0.2)
|
130 |
-
|
131 |
-
return top_matches
|
132 |
-
|
133 |
-
def fuzzy_string(self, prompt, limit, threshold=80, low_threshold=30):
|
134 |
-
|
135 |
-
# Get matches and their scores, limited by the specified 'limit'
|
136 |
-
matches = process.extract(prompt, self.response, limit=limit)
|
137 |
-
|
138 |
-
|
139 |
-
filtered_matches = [match for match in matches if match[1] >= threshold]
|
140 |
-
|
141 |
-
# If no matches meet the threshold, return the list of all matches' strings
|
142 |
-
if not filtered_matches:
|
143 |
-
# Return matches above the low_threshold
|
144 |
-
# Fix for wrong properties being returned
|
145 |
-
return [match[0] for match in matches if match[1] >= low_threshold]
|
146 |
-
|
147 |
-
|
148 |
-
# If there's only one match meeting the threshold, return it as a string
|
149 |
-
if len(filtered_matches) == 1:
|
150 |
-
return filtered_matches[0][0] # Return the matched string directly
|
151 |
-
|
152 |
-
# If there's more than one match meeting the threshold or ties, return the list of matches' strings
|
153 |
-
highest_score = filtered_matches[0][1]
|
154 |
-
ties = [match for match in filtered_matches if match[1] == highest_score]
|
155 |
-
|
156 |
-
# Return the strings of tied matches directly, ignoring the scores
|
157 |
-
m = [match[0] for match in ties]
|
158 |
-
if len(m) == 1:
|
159 |
-
return m[0]
|
160 |
-
return [match[0] for match in ties]
|
161 |
-
|
162 |
-
def fetch_pk(self, property_name, property_value):
|
163 |
-
# Some properties do not have a primary key
|
164 |
-
# Return the property value if no primary key is specified
|
165 |
-
pk_list = []
|
166 |
-
|
167 |
-
# Check if the property_value is a list; if not, make it a list for uniform processing
|
168 |
-
if not isinstance(property_value, list):
|
169 |
-
property_value = [property_value]
|
170 |
-
|
171 |
-
# Some properties do not have a primary key
|
172 |
-
# Return None for each property_value if no primary key is specified
|
173 |
-
if self.pk_column is None:
|
174 |
-
return [None for _ in property_value]
|
175 |
-
|
176 |
-
for value in property_value:
|
177 |
-
query = f"SELECT {self.pk_column} FROM {self.table} WHERE {self.column} = '{value}' LIMIT 1"
|
178 |
-
response = self.db.run(query)
|
179 |
-
|
180 |
-
# Append the response (PK or None) to the pk_list
|
181 |
-
pk_list.append(response)
|
182 |
-
|
183 |
-
return pk_list
|
184 |
-
|
185 |
-
|
186 |
-
def setup_retrievers(db, schema_config):
|
187 |
-
# retrievers = {}
|
188 |
-
# for prop, config in schema_config["properties"].items():
|
189 |
-
# retrievers[prop] = Retriever(db=db, config=config)
|
190 |
-
# return retrievers
|
191 |
-
|
192 |
-
retrievers = {}
|
193 |
-
# Iterate over each property in the schema_config's properties
|
194 |
-
for prop, config in schema_config["properties"].items():
|
195 |
-
# Access the 'items' dictionary for the configuration of the array's elements
|
196 |
-
item_config = config['items']
|
197 |
-
# Create a Retriever instance using the item_config
|
198 |
-
retrievers[prop] = Retriever(db=db, config=item_config)
|
199 |
-
return retrievers
|
200 |
-
|
201 |
-
|
202 |
-
def extract_properties(prompt, schema_config, custom_extractor_prompt=None):
|
203 |
-
"""Extract properties from the prompt."""
|
204 |
-
# modify schema_conf to only include the required properties
|
205 |
-
schema_stripped = {'properties': {}}
|
206 |
-
for key, value in schema_config['properties'].items():
|
207 |
-
schema_stripped['properties'][key] = {
|
208 |
-
'type': value['type'],
|
209 |
-
'items': {'type': value['items']['type']}
|
210 |
-
}
|
211 |
-
|
212 |
-
extractor = Extractor(schema_config=schema_stripped, custom_extractor_prompt=custom_extractor_prompt)
|
213 |
-
extraction_result = extractor.extract(prompt)
|
214 |
-
# print("Extraction Result:", extraction_result)
|
215 |
-
|
216 |
-
if 'text' in extraction_result and extraction_result['text']:
|
217 |
-
properties = extraction_result['text']
|
218 |
-
return properties
|
219 |
-
else:
|
220 |
-
print("No properties extracted.")
|
221 |
-
return None
|
222 |
-
|
223 |
-
|
224 |
-
def recheck_property_value(properties, property_name, retrievers, input_func):
|
225 |
-
while True:
|
226 |
-
new_value = input_func(f"Enter new value for {property_name} or type 'quit' to stop: ")
|
227 |
-
if new_value.lower() == 'quit':
|
228 |
-
break # Exit the loop and do not update the property
|
229 |
-
|
230 |
-
new_top_matches = retrievers[property_name].find_close_matches(new_value, n=3)
|
231 |
-
if new_top_matches:
|
232 |
-
# Display new top matches and ask for confirmation or re-entry
|
233 |
-
print("\nNew close matches found:")
|
234 |
-
for i, match in enumerate(new_top_matches, start=1):
|
235 |
-
print(f"[{i}] {match}")
|
236 |
-
print("[4] Re-enter value")
|
237 |
-
print("[5] Quit without updating")
|
238 |
-
|
239 |
-
selection = input_func("Select the best match (1-3), choose 4 to re-enter value, or 5 to quit: ")
|
240 |
-
if selection in ['1', '2', '3']:
|
241 |
-
selected_match = new_top_matches[int(selection) - 1]
|
242 |
-
properties[property_name] = selected_match # Update the dictionary directly
|
243 |
-
print(f"Updated {property_name} to {selected_match}")
|
244 |
-
break # Successfully updated, exit the loop
|
245 |
-
elif selection == '5':
|
246 |
-
break # Quit without updating
|
247 |
-
# Loop will continue if user selects 4 or inputs invalid selection
|
248 |
-
else:
|
249 |
-
print("No close matches found. Please try again or type 'quit' to stop.")
|
250 |
-
|
251 |
-
|
252 |
-
def check_and_update_properties(properties_list, retrievers, method="fuzzy", input_func=input):
|
253 |
-
"""
|
254 |
-
Checks and updates the properties in the properties list based on close matches found in the database.
|
255 |
-
The function iterates through each property in each property dictionary within the list,
|
256 |
-
finds close matches for it in the database using the retrievers, and updates the property
|
257 |
-
value based on user selection.
|
258 |
-
|
259 |
-
Args:
|
260 |
-
properties_list (list of dict): A list of dictionaries, where each dictionary contains properties
|
261 |
-
to check and potentially update based on database matches.
|
262 |
-
retrievers (dict): A dictionary of Retriever objects keyed by property name, used to find close matches in the database.
|
263 |
-
input_func (function, optional): A function to capture user input. Defaults to the built-in input function.
|
264 |
-
|
265 |
-
The function updates the properties_list in place based on user choices for updating property values
|
266 |
-
with close matches found by the retrievers.
|
267 |
-
"""
|
268 |
-
|
269 |
-
for index, properties in enumerate(properties_list):
|
270 |
-
for property_name, retriever in retrievers.items(): # Iterate using items to get both key and value
|
271 |
-
property_values = properties.get(property_name, [])
|
272 |
-
if not property_values: # Skip if the property is not present or is an empty list
|
273 |
-
continue
|
274 |
-
|
275 |
-
updated_property_values = [] # To store updated list of values
|
276 |
-
|
277 |
-
for value in property_values:
|
278 |
-
if retriever.augmented_table:
|
279 |
-
augmented_value = retriever.get_augmented_items(value)
|
280 |
-
if augmented_value:
|
281 |
-
updated_property_values.append(augmented_value)
|
282 |
-
continue
|
283 |
-
# Since property_value is now expected to be a list, we handle each value individually
|
284 |
-
top_matches = retriever.find_close_matches(value, method=method, n=3)
|
285 |
-
|
286 |
-
# Check if the closest match is the same as the current value
|
287 |
-
if top_matches and top_matches[0] == value:
|
288 |
-
updated_property_values.append(value)
|
289 |
-
continue
|
290 |
-
|
291 |
-
if not top_matches:
|
292 |
-
updated_property_values.append(value) # Keep the original value if no matches found
|
293 |
-
continue
|
294 |
-
|
295 |
-
if type(top_matches) == str and method == "fuzzy":
|
296 |
-
# If the top_matches is a string, it means that the threshold was met and only one item was returned
|
297 |
-
# In this case, we can directly update the property with the top match
|
298 |
-
updated_property_values.append(top_matches)
|
299 |
-
properties[property_name] = updated_property_values
|
300 |
-
continue
|
301 |
-
|
302 |
-
print(f"\nCurrent {property_name}: {value}")
|
303 |
-
for i, match in enumerate(top_matches, start=1):
|
304 |
-
print(f"[{i}] {match}")
|
305 |
-
print("[4] Enter new value")
|
306 |
-
|
307 |
-
# hmm = input_func(f"Fix for Pycharm, press enter to continue")
|
308 |
-
|
309 |
-
choice = input_func(f"Select the best match for {property_name} (1-4): ")
|
310 |
-
if choice in ['1', '2', '3']:
|
311 |
-
selected_match = top_matches[int(choice) - 1]
|
312 |
-
updated_property_values.append(selected_match) # Update with the selected match
|
313 |
-
print(f"Updated {property_name} to {selected_match}")
|
314 |
-
elif choice == '4':
|
315 |
-
# Allow re-entry of value for this specific item
|
316 |
-
recheck_property_value(properties, property_name, value, retrievers, input_func)
|
317 |
-
# Note: Implement recheck_property_value to handle individual value updates within the list
|
318 |
-
else:
|
319 |
-
print("Invalid selection. Property not updated.")
|
320 |
-
updated_property_values.append(value) # Keep the original value
|
321 |
-
|
322 |
-
# Update the entire list for the property after processing all values
|
323 |
-
properties[property_name] = updated_property_values
|
324 |
-
|
325 |
-
|
326 |
-
# Function to remove duplicates
|
327 |
-
def remove_duplicates(dicts):
|
328 |
-
seen = {} # Dictionary to keep track of seen values for each key
|
329 |
-
for d in dicts:
|
330 |
-
for key in list(d.keys()): # Use list to avoid RuntimeError for changing dict size during iteration
|
331 |
-
value = d[key]
|
332 |
-
if key in seen and value == seen[key]:
|
333 |
-
del d[key] # Remove key-value pair if duplicate is found
|
334 |
-
else:
|
335 |
-
seen[key] = value # Update seen values for this key
|
336 |
-
return dicts
|
337 |
-
|
338 |
-
|
339 |
-
def fetch_pks(properties_list, retrievers):
|
340 |
-
all_pk_attributes = [] # Initialize a list to store dictionaries of _pk attributes for each item in properties_list
|
341 |
-
|
342 |
-
# Iterate through each properties dictionary in the list
|
343 |
-
for properties in properties_list:
|
344 |
-
pk_attributes = {} # Initialize a dictionary for the current set of properties
|
345 |
-
for property_name, property_value in properties.items():
|
346 |
-
if property_name in retrievers:
|
347 |
-
# Fetch the primary key using the retriever for the current property
|
348 |
-
pk = retrievers[property_name].fetch_pk(property_name, property_value)
|
349 |
-
# Store it in the dictionary with a modified key name
|
350 |
-
pk_attributes[f"{property_name}_pk"] = pk
|
351 |
-
|
352 |
-
# Add the dictionary of _pk attributes for the current set of properties to the list
|
353 |
-
all_pk_attributes.append(pk_attributes)
|
354 |
-
|
355 |
-
# Return a list of dictionaries, where each dictionary contains _pk attributes for a set of properties
|
356 |
-
return all_pk_attributes
|
357 |
-
|
358 |
-
|
359 |
-
def update_prompt(prompt, properties, pk, properties_original):
|
360 |
-
# Replace the original prompt with the updated properties and pk
|
361 |
-
prompt = prompt.replace("{{properties}}", str(properties))
|
362 |
-
prompt = prompt.replace("{{pk}}", str(pk))
|
363 |
-
return prompt
|
364 |
-
|
365 |
-
|
366 |
-
def update_prompt_enhanced(prompt, properties, pk, properties_original):
|
367 |
-
updated_info = ""
|
368 |
-
for prop, pk_info, prop_orig in zip(properties, pk, properties_original):
|
369 |
-
for key in prop.keys():
|
370 |
-
# Extract original and updated values
|
371 |
-
orig_values = prop_orig.get(key, [])
|
372 |
-
updated_values = prop.get(key, [])
|
373 |
-
|
374 |
-
# Ensure both original and updated values are lists for uniform processing
|
375 |
-
if not isinstance(orig_values, list):
|
376 |
-
orig_values = [orig_values]
|
377 |
-
if not isinstance(updated_values, list):
|
378 |
-
updated_values = [updated_values]
|
379 |
-
|
380 |
-
# Extract primary key detail for this key, handling various pk formats carefully
|
381 |
-
pk_key = f"{key}_pk" # Construct pk key name based on the property key
|
382 |
-
pk_details = pk_info.get(pk_key, [])
|
383 |
-
if not isinstance(pk_details, list):
|
384 |
-
pk_details = [pk_details]
|
385 |
-
|
386 |
-
for orig_value, updated_value, pk_detail in zip(orig_values, updated_values, pk_details):
|
387 |
-
pk_value = None
|
388 |
-
if isinstance(pk_detail, str):
|
389 |
-
pk_value = pk_detail.strip("[]()").split(",")[0].replace("'", "").replace('"', '')
|
390 |
-
|
391 |
-
update_statement = ""
|
392 |
-
# Skip updating if there's no change in value to avoid redundant info
|
393 |
-
if orig_value != updated_value and pk_value:
|
394 |
-
update_statement = f"\n- {orig_value} (now referred to as {updated_value}) has a primary key: {pk_value}."
|
395 |
-
elif orig_value != updated_value:
|
396 |
-
update_statement = f"\n- {orig_value} (now referred to as {updated_value})."
|
397 |
-
elif pk_value:
|
398 |
-
update_statement = f"\n- {orig_value} has a primary key: {pk_value}."
|
399 |
-
|
400 |
-
updated_info += update_statement
|
401 |
-
|
402 |
-
if updated_info:
|
403 |
-
prompt += "\nUpdated Information:" + updated_info
|
404 |
-
|
405 |
-
return prompt
|
406 |
-
|
407 |
-
|
408 |
-
def prompt_cleaner(prompt, db, schema_config):
|
409 |
-
"""Main function to clean the prompt."""
|
410 |
-
|
411 |
-
retrievers = setup_retrievers(db, schema_config)
|
412 |
-
|
413 |
-
properties = extract_properties(prompt, schema_config)
|
414 |
-
# Keep original properties for later use
|
415 |
-
properties_original = deepcopy(properties)
|
416 |
-
# Remove duplicates - Happens when there are more than one player or team in the prompt
|
417 |
-
properties = remove_duplicates(properties)
|
418 |
-
if properties:
|
419 |
-
check_and_update_properties(properties, retrievers)
|
420 |
-
|
421 |
-
pk = fetch_pks(properties, retrievers)
|
422 |
-
properties = update_prompt_enhanced(prompt, properties, pk, properties_original)
|
423 |
-
|
424 |
-
return properties, pk
|
425 |
-
|
426 |
-
|
427 |
-
class PromptCleaner:
|
428 |
-
"""
|
429 |
-
A class designed to clean and process prompts by extracting properties, removing duplicates,
|
430 |
-
and updating these properties based on a predefined schema configuration and database interactions.
|
431 |
-
|
432 |
-
Attributes:
|
433 |
-
db: A database connection object used to execute queries and fetch data.
|
434 |
-
schema_config: A dictionary defining the schema configuration for the extraction process.
|
435 |
-
schema_config = {
|
436 |
-
"properties": {
|
437 |
-
# Property name
|
438 |
-
"person_name": {"type": "string", "db_table": "players", "db_column": "name", "pk_column": "hash",
|
439 |
-
# if mostly numeric, such as 2015-2016 set true
|
440 |
-
"numeric": False},
|
441 |
-
"team_name": {"type": "string", "db_table": "teams", "db_column": "name", "pk_column": "id",
|
442 |
-
"numeric": False},
|
443 |
-
# Add more as needed
|
444 |
-
},
|
445 |
-
# Parameter to extractor, if person_name is required, add it here and the extractor will
|
446 |
-
# return an error if it is not found
|
447 |
-
"required": [],
|
448 |
-
}
|
449 |
-
|
450 |
-
Methods:
|
451 |
-
clean(prompt): Cleans the given prompt by extracting and updating properties based on the database.
|
452 |
-
Returns a tuple containing the updated properties and their primary keys.
|
453 |
-
"""
|
454 |
-
|
455 |
-
def __init__(self, db=db, schema_config=None, custom_extractor_prompt=None):
|
456 |
-
"""
|
457 |
-
Initializes the PromptCleaner with a database connection and a schema configuration.
|
458 |
-
|
459 |
-
Args:
|
460 |
-
db: The database connection object to be used for querying. (if none, it will use the default db)
|
461 |
-
schema_config: A dictionary defining properties and their database mappings for extraction and updating.
|
462 |
-
"""
|
463 |
-
self.db = db
|
464 |
-
self.schema_config = schema_config
|
465 |
-
self.retrievers = setup_retrievers(self.db, self.schema_config)
|
466 |
-
self.cust_extractor_prompt = custom_extractor_prompt
|
467 |
-
|
468 |
-
def clean(self, prompt, return_pk=False, test=False, verbose = False):
|
469 |
-
"""
|
470 |
-
Processes the given prompt to extract properties, remove duplicates, update the properties
|
471 |
-
based on close matches within the database, and fetch primary keys for these properties.
|
472 |
-
|
473 |
-
The method first extracts properties from the prompt using the schema configuration,
|
474 |
-
then checks these properties against the database to find and update close matches.
|
475 |
-
It also fetches primary keys for the updated properties where applicable.
|
476 |
-
|
477 |
-
Args:
|
478 |
-
prompt (str): The prompt text to be cleaned and processed.
|
479 |
-
return_pk (bool): A flag to indicate whether to return primary keys along with the properties.
|
480 |
-
test (bool): A flag to indicate whether to return the original properties for testing purposes.
|
481 |
-
verbose (bool): A flag to indicate whether to return the original properties for debugging.
|
482 |
-
|
483 |
-
Returns:
|
484 |
-
tuple: A tuple containing two elements:
|
485 |
-
- The first element is the original prompt, with updated information that excist in the db.
|
486 |
-
- The second element is a list of dictionaries, each containing primary keys for the properties,
|
487 |
-
where applicable.
|
488 |
-
|
489 |
-
"""
|
490 |
-
if self.cust_extractor_prompt:
|
491 |
-
|
492 |
-
properties = extract_properties(prompt, self.schema_config, self.cust_extractor_prompt)
|
493 |
-
|
494 |
-
else:
|
495 |
-
properties = extract_properties(prompt, self.schema_config)
|
496 |
-
# Keep original properties for later use
|
497 |
-
properties_original = deepcopy(properties)
|
498 |
-
if test:
|
499 |
-
return properties_original
|
500 |
-
# Remove duplicates - Happens when there are more than one player or team in the prompt
|
501 |
-
# properties = remove_duplicates(properties)
|
502 |
-
pk = None
|
503 |
-
if properties:
|
504 |
-
check_and_update_properties(properties, self.retrievers)
|
505 |
-
pk = fetch_pks(properties, self.retrievers)
|
506 |
-
properties = update_prompt_enhanced(prompt, properties, pk, properties_original)
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
if return_pk:
|
511 |
-
return properties, pk
|
512 |
-
elif verbose:
|
513 |
-
return properties, properties_original
|
514 |
-
else:
|
515 |
-
return properties
|
516 |
-
|
517 |
-
|
518 |
-
def load_json(file_path: str) -> dict:
|
519 |
-
with open(file_path, 'r') as file:
|
520 |
-
return json.load(file)
|
521 |
-
|
522 |
-
|
523 |
-
def create_extractor(schema: str = "src/conf/schema.json", db: SQLDatabase = db_uri):
|
524 |
-
schema_config = load_json(schema)
|
525 |
-
db = SQLDatabase.from_uri(db)
|
526 |
-
pre_prompt = """Extract and save the relevant entities mentioned \
|
527 |
-
in the following passage together with their properties.
|
528 |
-
|
529 |
-
Only extract the properties mentioned in the 'information_extraction' function.
|
530 |
-
|
531 |
-
The questions are soccer related. game_event are things like yellow cards, goals, assists, freekick ect.
|
532 |
-
Generic properties like, "description", "home team", "away team", "game" ect should NOT be extracted.
|
533 |
-
|
534 |
-
If a property is not present and is not required in the function parameters, do not include it in the output.
|
535 |
-
If no properties are found, return an empty list.
|
536 |
-
|
537 |
-
Here are some exampels:
|
538 |
-
'How many goals did Henry score for Arsnl in the 2015 season?'
|
539 |
-
person_name': ['Henry'], 'team_name': [Arsnl],'year_season': ['2015'],
|
540 |
-
|
541 |
-
Passage:
|
542 |
-
{input}
|
543 |
-
"""
|
544 |
-
|
545 |
-
return PromptCleaner(db, schema_config, custom_extractor_prompt=pre_prompt)
|
546 |
-
|
547 |
-
|
548 |
-
if __name__ == "__main__":
|
549 |
-
|
550 |
-
|
551 |
-
schema_config = load_json("src/conf/schema.json")
|
552 |
-
# Add game and league to the schema_config
|
553 |
-
|
554 |
-
# prompter = PromptCleaner(db, schema_config, custom_extractor_prompt=extract_prompt)
|
555 |
-
prompter = create_extractor("src/conf/schema.json", "sqlite:///data/games.db")
|
556 |
-
prompt= prompter.clean("Give me goals, shots on target, shots off target and corners from the game between ManU and Swansa")
|
557 |
-
|
558 |
-
|
559 |
-
print(prompt)
|
560 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|