SinhNguyen
commited on
Commit
·
3227970
1
Parent(s):
e7f3990
fix bugs save caches
Browse files- app.py +67 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import asyncio
|
5 |
+
from transformers import pipeline
|
6 |
+
import time
|
7 |
+
|
8 |
+
|
9 |
+
class TaskClassifier:
|
10 |
+
|
11 |
+
def __init__(self):
|
12 |
+
self.classifier = pipeline("zero-shot-classification",
|
13 |
+
model="facebook/bart-large-mnli")
|
14 |
+
|
15 |
+
def __call__(self, client_input: str, task_types: str):
|
16 |
+
"""Classify tasks for LLM-based gent"""
|
17 |
+
candidate_labels = [label.strip() for label in task_types.split(",")]
|
18 |
+
time_execution = time.time()
|
19 |
+
output = self.classifier(str(client_input), candidate_labels, multi_label=False)
|
20 |
+
# output = classifier(input, candidate_labels, multi_label=False)
|
21 |
+
time_execution = round(time.time() - time_execution, 2)
|
22 |
+
# return {"task_type": output['labels'][0], "confidence": round(output['scores'][0],2), "inference_time": time_execution}
|
23 |
+
return f"Task Type : {output['labels'][0]}\nScore : {round(output['scores'][0],2)}\nInference Time : {time_execution}"
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
def load_classifier(client_input, task_types):
|
29 |
+
global classifier
|
30 |
+
return classifier(client_input, task_types)
|
31 |
+
|
32 |
+
|
33 |
+
def question_answer(client_input, task_types):
|
34 |
+
if client_input.strip()=='':
|
35 |
+
return '''[ERROR]: Please enter client input (e.g., 'Find the top products for a given category').'''
|
36 |
+
if task_types.strip() == '':
|
37 |
+
return '''[ERROR]: Please enter list of task type of LLM-based agents (e.g., 'Greeting, Information retrieval, Sentiment analysis, Text generation, Code generation, Q&A, Summarize'): '''
|
38 |
+
return load_classifier(client_input, task_types)
|
39 |
+
|
40 |
+
|
41 |
+
classifier = TaskClassifier()
|
42 |
+
|
43 |
+
title = 'Task Clarity for LLM-based Agents'
|
44 |
+
description = """ Task Clarity for LLM-based Agents is a powerful tool that assists developers in crafting precise task instructions, identifies task types (e.g., Q&A, Text generation) for your LLM-based Agents."""
|
45 |
+
|
46 |
+
|
47 |
+
with gr.Blocks() as demo:
|
48 |
+
|
49 |
+
gr.Markdown(f'<center><h1>{title}</h1></center>')
|
50 |
+
gr.Markdown(description)
|
51 |
+
|
52 |
+
with gr.Row():
|
53 |
+
|
54 |
+
with gr.Group():
|
55 |
+
gr.Markdown(f'<p style="text-align:center">Report about the model: <a href="https://sinh-nguyen.notion.site/Report-Solving-Task-Clarity-for-LLM-based-Agents-4b49b5229a3f423984743b11f3c2bec8">here</a></p>')
|
56 |
+
client_input=gr.Textbox(label='''Please enter client's input (e.g., 'Hello?'): ''')
|
57 |
+
task_types = gr.Textbox(label='''Please enter list of task type of LLM-based agents (e.g., 'Greeting, Information retrieval, Sentiment analysis, Text generation, Code generation, Q&A, Summarization'): ''')
|
58 |
+
btn = gr.Button(value='Submit')
|
59 |
+
btn.style(full_width=True)
|
60 |
+
#openai.api_key = os.getenv('Your_Key_Here')
|
61 |
+
with gr.Group():
|
62 |
+
answer = gr.Textbox(label='The answer to your question is :')
|
63 |
+
|
64 |
+
btn.click(question_answer, inputs=[client_input, task_types], outputs=[answer])
|
65 |
+
|
66 |
+
demo.launch(share=True)
|
67 |
+
# demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub
|
2 |
+
git+https://github.com/huggingface/transformers
|
3 |
+
accelerate
|
4 |
+
peft
|
5 |
+
bitsandbytes
|
6 |
+
trl
|
7 |
+
py7zr
|
8 |
+
gradio==3.42.0
|