Spaces:
Sleeping
Sleeping
import time | |
import gradio as gr | |
from pathlib import Path | |
import pickle as pkl | |
from models import * | |
examples = [[str(path)] for path in Path(r"examples").glob("*")] | |
with open('class_names_to_idx.pkl', 'rb') as fp: | |
class_idx_to_names = pkl.load(fp) | |
def predict_one(model, transforms, image, device, class_idx_to_names): | |
model.eval() | |
model = model.to(device) | |
with torch.inference_mode(): | |
start_time = time.perf_counter() | |
image_transformed = transforms(image).unsqueeze(dim = 0).to(device) | |
y_logits = model(image_transformed) | |
y_preds = torch.softmax(y_logits, dim = 1) | |
end_time = time.perf_counter() | |
predictions = {class_idx_to_names[index]: x.item() for index, x in enumerate(y_preds[0])} | |
return predictions, end_time - start_time | |
def predict(image, model_choice): | |
if model_choice is None or model_choice == "effnet_b2": | |
model, transforms = get_effnet_b2() | |
else: | |
model, transforms = get_vit_16_base_transformer() | |
predictions, time_taken = predict_one(model, transforms, image, "cpu", class_idx_to_names) | |
return predictions, time_taken | |
title = "Food Recognition ππ" | |
desc = "A dual model app ft. EfficientNetB2 Feature Extractor and VisionTransformer. Now, bigger than ever. featuring 101 classes" | |
demo = gr.Interface(fn = predict, | |
inputs = [gr.Image(type = "pil", label = "upload an Jpeg or Png"), gr.Radio(["effnet_b2", "ViT (Vision Transformer)"], label = "choose model (default on effnet)")], | |
outputs = [gr.Label(num_top_classes = 5, label = "predictions"), gr.Number(label = "Prediction Time in seconds")], | |
examples = examples, | |
title = title, | |
description=desc) | |
demo.launch(debug = False) |