Food101_Full / app.py
Sirreajohn's picture
uploaded gradio app
12f775f
import time
import gradio as gr
from pathlib import Path
import pickle as pkl
from models import *
examples = [[str(path)] for path in Path(r"examples").glob("*")]
with open('class_names_to_idx.pkl', 'rb') as fp:
class_idx_to_names = pkl.load(fp)
def predict_one(model, transforms, image, device, class_idx_to_names):
model.eval()
model = model.to(device)
with torch.inference_mode():
start_time = time.perf_counter()
image_transformed = transforms(image).unsqueeze(dim = 0).to(device)
y_logits = model(image_transformed)
y_preds = torch.softmax(y_logits, dim = 1)
end_time = time.perf_counter()
predictions = {class_idx_to_names[index]: x.item() for index, x in enumerate(y_preds[0])}
return predictions, end_time - start_time
def predict(image, model_choice):
if model_choice is None or model_choice == "effnet_b2":
model, transforms = get_effnet_b2()
else:
model, transforms = get_vit_16_base_transformer()
predictions, time_taken = predict_one(model, transforms, image, "cpu", class_idx_to_names)
return predictions, time_taken
title = "Food Recognition πŸ•πŸ•"
desc = "A dual model app ft. EfficientNetB2 Feature Extractor and VisionTransformer. Now, bigger than ever. featuring 101 classes"
demo = gr.Interface(fn = predict,
inputs = [gr.Image(type = "pil", label = "upload an Jpeg or Png"), gr.Radio(["effnet_b2", "ViT (Vision Transformer)"], label = "choose model (default on effnet)")],
outputs = [gr.Label(num_top_classes = 5, label = "predictions"), gr.Number(label = "Prediction Time in seconds")],
examples = examples,
title = title,
description=desc)
demo.launch(debug = False)