Spaces:
Sleeping
Sleeping
Commit
Β·
9d6c5d2
1
Parent(s):
5348292
initial_commit
Browse files- __pycache__/models.cpython-39.pyc +0 -0
- app.py +62 -0
- examples/108310.jpg +0 -0
- examples/1203702.jpg +0 -0
- examples/2572488.jpg +0 -0
- examples/296426.jpg +0 -0
- examples/511818.jpg +0 -0
- models.py +17 -0
- models/eff_netb2_custom_head_3_classes.pth +3 -0
- models/vit_16_base_custom_head_3_classes.pth +3 -0
- requirements.txt +3 -0
__pycache__/models.cpython-39.pyc
ADDED
Binary file (825 Bytes). View file
|
|
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import gradio as gr
|
3 |
+
from pathlib import Path
|
4 |
+
from models import *
|
5 |
+
|
6 |
+
class_idx_to_names = {
|
7 |
+
0: "pizza",
|
8 |
+
1: "steak",
|
9 |
+
2: "sushi"
|
10 |
+
}
|
11 |
+
|
12 |
+
examples = [[str(path)] for path in Path(r"examples").glob("*")]
|
13 |
+
|
14 |
+
def predict_one(model, transforms, image, device, class_idx_to_names):
|
15 |
+
model.eval()
|
16 |
+
model = model.to(device)
|
17 |
+
with torch.inference_mode():
|
18 |
+
|
19 |
+
start_time = time.perf_counter()
|
20 |
+
image_transformed = transforms(image).unsqueeze(dim = 0).to(device)
|
21 |
+
|
22 |
+
y_logits = model(image_transformed)
|
23 |
+
|
24 |
+
y_preds = torch.softmax(y_logits, dim = 1)
|
25 |
+
y_probs = torch.argmax(y_preds, dim = 1)
|
26 |
+
|
27 |
+
end_time = time.perf_counter()
|
28 |
+
|
29 |
+
predictions = {class_idx_to_names[index]: x.item() for index, x in enumerate(y_preds[0])}
|
30 |
+
|
31 |
+
return predictions, end_time - start_time
|
32 |
+
|
33 |
+
def predict(image, model_choice):
|
34 |
+
|
35 |
+
if model_choice is None or model_choice == "effnet_b2":
|
36 |
+
model, transforms = get_effnet_b2()
|
37 |
+
else:
|
38 |
+
model, transforms = get_vit_16_base_transformer()
|
39 |
+
|
40 |
+
predictions, time_taken = predict_one(model, transforms, image, "cpu", class_idx_to_names)
|
41 |
+
return predictions, time_taken
|
42 |
+
|
43 |
+
|
44 |
+
title = "Food Recognition ππ"
|
45 |
+
desc = "A dual model app ft. EfficientNetB2 Feature Extractor and VisionTransformer."
|
46 |
+
article = '''
|
47 |
+
## Stats on different Models
|
48 |
+
---
|
49 |
+
| Model Name | Train Loss | Test Loss | Train Accuracy | Test Accuracy | Num Parameters | Model Size |
|
50 |
+
|-----------------|------------|-----------|----------------|---------------|----------------|------------|
|
51 |
+
| EfficientNet_b2 | 0.340270 | 0.301134 | 0.906250 | 0.953409 | 7705221 | 29.91 MB |
|
52 |
+
| ViT_Base_16 | 0.040448 | 0.055140 | 0.995833 | 0.981250 | 85800963 | 327.39 MB |
|
53 |
+
'''
|
54 |
+
demo = gr.Interface(fn = predict,
|
55 |
+
inputs = [gr.Image(type = "pil", label = "upload an Jpeg or Png"), gr.Radio(["effnet_b2", "ViT (Vision Transformer)"], label = "choose model (default on effnet)")],
|
56 |
+
outputs = [gr.Label(num_top_classes=3, label = "predictions"), gr.Number(label = "Prediction Time in seconds")],
|
57 |
+
examples = examples,
|
58 |
+
title = title,
|
59 |
+
description=desc,
|
60 |
+
article=article)
|
61 |
+
|
62 |
+
demo.launch(debug = False)
|
examples/108310.jpg
ADDED
![]() |
examples/1203702.jpg
ADDED
![]() |
examples/2572488.jpg
ADDED
![]() |
examples/296426.jpg
ADDED
![]() |
examples/511818.jpg
ADDED
![]() |
models.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from torchvision.models import vit_b_16, ViT_B_16_Weights
|
4 |
+
from torchvision.models import efficientnet_b2, EfficientNet_B2_Weights
|
5 |
+
|
6 |
+
|
7 |
+
def get_vit_16_base_transformer():
|
8 |
+
vit_b_16_model = torch.load(r"models\vit_16_base_custom_head_3_classes.pth")
|
9 |
+
vit_b_16_transforms = ViT_B_16_Weights.DEFAULT.transforms()
|
10 |
+
|
11 |
+
return vit_b_16_model, vit_b_16_transforms
|
12 |
+
|
13 |
+
def get_effnet_b2():
|
14 |
+
eff_net_b2_model = torch.load(r"models\eff_netb2_custom_head_3_classes.pth")
|
15 |
+
eff_net_b2_transforms = EfficientNet_B2_Weights.DEFAULT.transforms()
|
16 |
+
|
17 |
+
return eff_net_b2_model, eff_net_b2_transforms
|
models/eff_netb2_custom_head_3_classes.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34f7f58fa9ead3866305089bca9f47ab2115e783820d471a060b10aaf43165ac
|
3 |
+
size 31362521
|
models/vit_16_base_custom_head_3_classes.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96d4e7ebcdf7e83e23b9e9816e2c6d58b0f5836e6143334440c1bd6b0e9dbe3d
|
3 |
+
size 343289909
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
gradio
|