Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,32 @@
|
|
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
import
|
|
|
|
|
|
|
4 |
|
5 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
6 |
|
7 |
-
|
8 |
def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
|
9 |
formatted_text = ""
|
10 |
for message in messages:
|
11 |
if message["role"] == "system":
|
12 |
-
formatted_text += "
|
13 |
elif message["role"] == "user":
|
14 |
-
formatted_text += "
|
15 |
elif message["role"] == "assistant":
|
16 |
-
formatted_text += "
|
17 |
else:
|
18 |
raise ValueError(
|
19 |
-
"Tulu chat template only supports 'system', 'user' and 'assistant' roles. Invalid role: {}.".format(
|
20 |
message["role"]
|
21 |
)
|
22 |
)
|
23 |
-
formatted_text += "
|
24 |
formatted_text = bos + formatted_text if add_bos else formatted_text
|
25 |
return formatted_text
|
26 |
|
27 |
-
|
28 |
def inference(input_prompts, model, tokenizer):
|
29 |
input_prompts = [
|
30 |
create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
|
@@ -34,8 +36,8 @@ def inference(input_prompts, model, tokenizer):
|
|
34 |
encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
|
35 |
encodings = encodings.to(device)
|
36 |
|
37 |
-
with torch.
|
38 |
-
outputs = model.generate(encodings.input_ids, do_sample=False,
|
39 |
|
40 |
output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
|
41 |
|
@@ -45,26 +47,124 @@ def inference(input_prompts, model, tokenizer):
|
|
45 |
output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
|
46 |
return output_texts
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
|
51 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
52 |
-
tokenizer.pad_token = tokenizer.eos_token
|
53 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
|
54 |
|
55 |
-
def respond_to_text(input_text):
|
56 |
-
outputs = inference([input_text], model, tokenizer)
|
57 |
-
return outputs[0]
|
58 |
|
59 |
|
60 |
-
input_prompts = [
|
61 |
-
"मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं।",
|
62 |
-
"मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं और उनका वर्णन करें।",
|
63 |
-
]
|
64 |
-
iface = gr.Interface(fn=respond_to_text, inputs="text", outputs="text")
|
65 |
-
iface.launch()
|
66 |
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
# import gradio as gr
|
69 |
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
70 |
|
|
|
1 |
+
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import speech_recognition as sr
|
5 |
+
from gtts import gTTS
|
6 |
+
from pydub import AudioSegment
|
7 |
+
import io
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
|
|
11 |
def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
|
12 |
formatted_text = ""
|
13 |
for message in messages:
|
14 |
if message["role"] == "system":
|
15 |
+
formatted_text += "\n" + message["content"] + "\n"
|
16 |
elif message["role"] == "user":
|
17 |
+
formatted_text += "\n" + message["content"] + "\n"
|
18 |
elif message["role"] == "assistant":
|
19 |
+
formatted_text += "\n" + message["content"].strip() + eos + "\n"
|
20 |
else:
|
21 |
raise ValueError(
|
22 |
+
"Tulu chat template only supports 'system', 'user', and 'assistant' roles. Invalid role: {}.".format(
|
23 |
message["role"]
|
24 |
)
|
25 |
)
|
26 |
+
formatted_text += "\n"
|
27 |
formatted_text = bos + formatted_text if add_bos else formatted_text
|
28 |
return formatted_text
|
29 |
|
|
|
30 |
def inference(input_prompts, model, tokenizer):
|
31 |
input_prompts = [
|
32 |
create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
|
|
|
36 |
encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
|
37 |
encodings = encodings.to(device)
|
38 |
|
39 |
+
with torch.no_grad():
|
40 |
+
outputs = model.generate(encodings.input_ids, do_sample=False, max_length=250)
|
41 |
|
42 |
output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
|
43 |
|
|
|
47 |
output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
|
48 |
return output_texts
|
49 |
|
50 |
+
def recognize_speech():
|
51 |
+
recognizer = sr.Recognizer()
|
52 |
+
microphone = sr.Microphone()
|
53 |
+
|
54 |
+
with microphone as source:
|
55 |
+
print("Listening...")
|
56 |
+
recognizer.adjust_for_ambient_noise(source)
|
57 |
+
audio_data = recognizer.listen(source, timeout=5)
|
58 |
+
|
59 |
+
try:
|
60 |
+
print("Recognizing...")
|
61 |
+
text = recognizer.recognize_google(audio_data, language="hi-IN")
|
62 |
+
return text
|
63 |
+
except sr.UnknownValueError:
|
64 |
+
print("Speech Recognition could not understand audio.")
|
65 |
+
return ""
|
66 |
+
except sr.RequestError as e:
|
67 |
+
print(f"Could not request results from Google Speech Recognition service; {e}")
|
68 |
+
return ""
|
69 |
+
|
70 |
+
def text_to_speech(text):
|
71 |
+
tts = gTTS(text=text, lang="hi")
|
72 |
+
audio_stream = io.BytesIO()
|
73 |
+
tts.save(audio_stream)
|
74 |
+
audio = AudioSegment.from_file(io.BytesIO(audio_stream.read()), format="mp3")
|
75 |
+
return audio
|
76 |
+
|
77 |
+
def respond_to_input(input_text):
|
78 |
+
output_texts = inference([input_text], model, tokenizer)
|
79 |
+
output_text = output_texts[0]
|
80 |
+
output_audio = text_to_speech(output_text)
|
81 |
+
return output_text, output_audio.export(format="wav")
|
82 |
+
|
83 |
+
iface = gr.Interface(
|
84 |
+
fn=respond_to_input,
|
85 |
+
inputs=["text", "microphone"],
|
86 |
+
outputs=["text", "audio"],
|
87 |
+
live=True,
|
88 |
+
title="Airavata Speech Chatbot",
|
89 |
+
description="Type or speak to me, and I'll generate a response!",
|
90 |
+
theme="light",
|
91 |
+
)
|
92 |
|
93 |
+
iface.launch()
|
94 |
|
|
|
|
|
|
|
95 |
|
|
|
|
|
|
|
96 |
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
+
###############################################################################################################################
|
101 |
+
# import torch
|
102 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
103 |
+
# import gradio as gr
|
104 |
+
|
105 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
106 |
+
|
107 |
+
|
108 |
+
# def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
|
109 |
+
# formatted_text = ""
|
110 |
+
# for message in messages:
|
111 |
+
# if message["role"] == "system":
|
112 |
+
# formatted_text += "<|system|>\n" + message["content"] + "\n"
|
113 |
+
# elif message["role"] == "user":
|
114 |
+
# formatted_text += "<|user|>\n" + message["content"] + "\n"
|
115 |
+
# elif message["role"] == "assistant":
|
116 |
+
# formatted_text += "<|assistant|>\n" + message["content"].strip() + eos + "\n"
|
117 |
+
# else:
|
118 |
+
# raise ValueError(
|
119 |
+
# "Tulu chat template only supports 'system', 'user' and 'assistant' roles. Invalid role: {}.".format(
|
120 |
+
# message["role"]
|
121 |
+
# )
|
122 |
+
# )
|
123 |
+
# formatted_text += "<|assistant|>\n"
|
124 |
+
# formatted_text = bos + formatted_text if add_bos else formatted_text
|
125 |
+
# return formatted_text
|
126 |
+
|
127 |
+
|
128 |
+
# def inference(input_prompts, model, tokenizer):
|
129 |
+
# input_prompts = [
|
130 |
+
# create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
|
131 |
+
# for input_prompt in input_prompts
|
132 |
+
# ]
|
133 |
+
|
134 |
+
# encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
|
135 |
+
# encodings = encodings.to(device)
|
136 |
+
|
137 |
+
# with torch.inference_mode():
|
138 |
+
# outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=250)
|
139 |
+
|
140 |
+
# output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
|
141 |
+
|
142 |
+
# input_prompts = [
|
143 |
+
# tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
|
144 |
+
# ]
|
145 |
+
# output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
|
146 |
+
# return output_texts
|
147 |
+
|
148 |
+
|
149 |
+
# model_name = "ai4bharat/Airavata"
|
150 |
+
|
151 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
152 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
153 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
|
154 |
+
|
155 |
+
# def respond_to_text(input_text):
|
156 |
+
# outputs = inference([input_text], model, tokenizer)
|
157 |
+
# return outputs[0]
|
158 |
+
|
159 |
+
|
160 |
+
# input_prompts = [
|
161 |
+
# "मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं।",
|
162 |
+
# "मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं और उनका वर्णन करें।",
|
163 |
+
# ]
|
164 |
+
# iface = gr.Interface(fn=respond_to_text, inputs="text", outputs="text")
|
165 |
+
# iface.launch()
|
166 |
+
########################################################################################
|
167 |
+
|
168 |
# import gradio as gr
|
169 |
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
170 |
|