Spaces:
Paused
Paused
SivaResearch
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
-
import whisper
|
2 |
-
import torch
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
-
import gradio as gr
|
5 |
-
# from gradio import inputs # Import the 'inputs' module from 'gradio'
|
6 |
|
7 |
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
13 |
model_name = "ai4bharat/Airavata"
|
14 |
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
@@ -53,43 +52,10 @@ def inference(input_prompt, model, tokenizer):
|
|
53 |
return output_text
|
54 |
|
55 |
|
56 |
-
def
|
57 |
-
|
58 |
-
#time.sleep(3)
|
59 |
-
# load audio and pad/trim it to fit 30 seconds
|
60 |
-
audio = whisper.load_audio(audio)
|
61 |
-
audio = whisper.pad_or_trim(audio)
|
62 |
-
|
63 |
-
# make log-Mel spectrogram and move to the same device as the model
|
64 |
-
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
65 |
-
|
66 |
-
# detect the spoken language
|
67 |
-
_, probs = model.detect_language(mel)
|
68 |
-
print(f"Detected language: {max(probs, key=probs.get)}")
|
69 |
-
|
70 |
-
# decode the audio
|
71 |
-
options = whisper.DecodingOptions()
|
72 |
-
result = whisper.decode(model, mel, options)
|
73 |
-
return result.text
|
74 |
-
|
75 |
-
|
76 |
-
def chat_interface(audio_tuple ):
|
77 |
-
audio_path = audio_tuple[0] if isinstance(audio_tuple, tuple) else audio_tuple
|
78 |
-
|
79 |
-
message = transcribe(audio_path)
|
80 |
outputs = inference(message, model, tokenizer)
|
81 |
return outputs
|
82 |
|
83 |
|
84 |
-
gr.
|
85 |
-
|
86 |
-
fn=chat_interface,
|
87 |
-
inputs=[
|
88 |
-
gr.Audio(sources=["microphone"])
|
89 |
-
],
|
90 |
-
|
91 |
-
outputs=[
|
92 |
-
"textbox"
|
93 |
-
],
|
94 |
-
theme="darkly"
|
95 |
-
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
|
3 |
|
4 |
+
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
+
import gradio as gr
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
model_name = "ai4bharat/Airavata"
|
13 |
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
|
|
52 |
return output_text
|
53 |
|
54 |
|
55 |
+
def chat_interface(message,history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
outputs = inference(message, model, tokenizer)
|
57 |
return outputs
|
58 |
|
59 |
|
60 |
+
chat_interface = gr.ChatInterface(chat_interface, title="CAMAI")
|
61 |
+
chat_interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|