Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,719 Bytes
2fbf361 baea9b2 2fbf361 576e22a baea9b2 2fbf361 baea9b2 2fbf361 576e22a 2fbf361 d1212b2 2fbf361 baea9b2 2fbf361 576e22a 2fbf361 baea9b2 576e22a 2fbf361 576e22a 2fbf361 baea9b2 576e22a baea9b2 576e22a baea9b2 576e22a baea9b2 576e22a baea9b2 2fbf361 576e22a 2fbf361 baea9b2 576e22a 5ae5bca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
from typing import Tuple, Optional
import gradio as gr
import supervision as sv
import torch
from PIL import Image
from utils.florence import load_florence_model, run_florence_inference, \
FLORENCE_DETAILED_CAPTION_TASK, \
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
from utils.modes import INFERENCE_MODES, OPEN_VOCABULARY_DETECTION, \
CAPTION_GROUNDING_MASKS
from utils.sam import load_sam_model, run_sam_inference
MARKDOWN = """
# Florence2 + SAM2 🔥
This demo integrates Florence2 and SAM2 models for detailed image captioning and object
detection. Florence2 generates detailed captions that are then used to perform phrase
grounding. The Segment Anything Model 2 (SAM2) converts these phrase-grounded boxes
into masks.
"""
EXAMPLES = [
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'straw'],
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'napkin'],
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 'tail'],
[CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
[CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
]
DEVICE = torch.device("cuda")
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
SAM_MODEL = load_sam_model(device=DEVICE)
BOX_ANNOTATOR = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
LABEL_ANNOTATOR = sv.LabelAnnotator(
color_lookup=sv.ColorLookup.INDEX,
text_position=sv.Position.CENTER_OF_MASS,
text_color=sv.Color.from_hex("#FFFFFF"),
border_radius=5
)
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
def annotate_image(image, detections):
output_image = image.copy()
output_image = MASK_ANNOTATOR.annotate(output_image, detections)
output_image = BOX_ANNOTATOR.annotate(output_image, detections)
output_image = LABEL_ANNOTATOR.annotate(output_image, detections)
return output_image
def on_mode_dropdown_change(text):
return [
gr.Textbox(visible=text == OPEN_VOCABULARY_DETECTION),
gr.Textbox(visible=text == CAPTION_GROUNDING_MASKS),
]
def process(
mode_dropdown, image_input, text_input
) -> Tuple[Optional[Image.Image], Optional[str]]:
if not image_input:
return None, None
if mode_dropdown == OPEN_VOCABULARY_DETECTION:
if not text_input:
return None, None
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
text=text_input
)
detections = sv.Detections.from_lmm(
lmm=sv.LMM.FLORENCE_2,
result=result,
resolution_wh=image_input.size
)
detections = run_sam_inference(SAM_MODEL, image_input, detections)
return annotate_image(image_input, detections), None
if mode_dropdown == CAPTION_GROUNDING_MASKS:
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_DETAILED_CAPTION_TASK
)
caption = result[FLORENCE_DETAILED_CAPTION_TASK]
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK,
text=caption
)
detections = sv.Detections.from_lmm(
lmm=sv.LMM.FLORENCE_2,
result=result,
resolution_wh=image_input.size
)
detections = run_sam_inference(SAM_MODEL, image_input, detections)
return annotate_image(image_input, detections), caption
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
mode_dropdown_component = gr.Dropdown(
choices=INFERENCE_MODES,
value=INFERENCE_MODES[0],
label="Mode",
info="Select a mode to use.",
interactive=True
)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(
type='pil', label='Upload image')
text_input_component = gr.Textbox(
label='Text prompt')
submit_button_component = gr.Button(value='Submit', variant='primary')
with gr.Column():
image_output_component = gr.Image(type='pil', label='Image output')
text_output_component = gr.Textbox(label='Caption output', visible=False)
with gr.Row():
gr.Examples(
fn=process,
examples=EXAMPLES,
inputs=[
mode_dropdown_component,
image_input_component,
text_input_component
],
outputs=[
image_output_component,
text_output_component
],
run_on_click=True
)
submit_button_component.click(
fn=process,
inputs=[
mode_dropdown_component,
image_input_component,
text_input_component
],
outputs=[
image_output_component,
text_output_component
]
)
mode_dropdown_component.change(
on_mode_dropdown_change,
inputs=[mode_dropdown_component],
outputs=[
text_input_component,
text_output_component
]
)
demo.launch(debug=False, show_error=True)
|