File size: 5,505 Bytes
c45703e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
categories = [
    "Bags",
    "Feet",
    "Hands",
    "Head",
    "Lower Body",
    "Neck",
    "Outwear",
    "Upper Body",
    "Waist",
    "Whole Body",
]

import torch
from torch import nn

from collections import OrderedDict
import logging

logger = logging.getLogger(__name__)


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        if self.weight.dtype != x.dtype:
            orig_type = x.dtype
            ret = super().forward(x.type(self.weight.dtype))
            return ret.type(orig_type)
        else:
            return super().forward(x)


class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    def __init__(
        self,
        d_model: int,
        n_head: int,
        attn_mask: torch.Tensor = None,
    ):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(
            OrderedDict(
                [
                    (
                        "c_fc",
                        nn.Linear(d_model, d_model * 4),
                    ),
                    ("gelu", QuickGELU()),
                    (
                        "c_proj",
                        nn.Linear(d_model * 4, d_model),
                    ),
                ]
            )
        )
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask

    def attention(self, x: torch.Tensor):
        self.attn_mask = (
            self.attn_mask.to(dtype=x.dtype, device=x.device)
            if self.attn_mask is not None
            else None
        )
        return self.attn(
            x,
            x,
            x,
            need_weights=False,
            attn_mask=self.attn_mask,
        )[0]

    def forward(self, x: torch.Tensor):
        x = x + self.attention(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class Transformer(nn.Module):
    def __init__(
        self,
        width: int,
        layers: int,
        heads: int,
        attn_mask: torch.Tensor = None,
    ):
        super().__init__()
        self.width = width
        self.layers = layers
        self.resblocks = nn.Sequential(
            *[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]
        )

    def forward(self, x: torch.Tensor):
        return self.resblocks(x)


class ConditionalViT(nn.Module):
    def __init__(
        self,
        input_resolution: int,
        patch_size: int,
        width: int,
        layers: int,
        heads: int,
        output_dim: int,
        n_categories: int = None,
        **kwargs,
    ):
        if kwargs:
            logger.warning(f"Got unused kwargs : {kwargs}")

        super().__init__()
        self.input_resolution = input_resolution
        self.output_dim = output_dim
        self.conv1 = nn.Conv2d(
            in_channels=3,
            out_channels=width,
            kernel_size=patch_size,
            stride=patch_size,
            bias=False,
        )

        scale = width**-0.5

        self.class_embedding = nn.Parameter(scale * torch.randn(width))

        self.n_categories = n_categories
        if self.n_categories:
            self.c_embedding = nn.Embedding(self.n_categories, width)
            self.c_pos_embedding = nn.Parameter(scale * torch.randn(1, width))

        self.positional_embedding = nn.Parameter(
            scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)
        )
        self.ln_pre = LayerNorm(width)

        self.transformer = Transformer(width, layers, heads)
        self.ln_post = LayerNorm(width)
        self.logit_scale = torch.nn.Parameter(torch.ones([]) * 4.6052)

        self.proj = nn.Parameter(scale * torch.randn(width, output_dim))

    def forward(self, imgs: torch.Tensor, c: torch.Tensor = None):
        """
        imgs : Batch of images
        c : category indices. 0 = "No given category".
        """

        x = self.conv1(imgs)  # shape = [*, width, grid, grid]
        # shape = [*, width, grid ** 2]
        x = x.reshape(x.shape[0], x.shape[1], -1)
        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]

        # [CLS, grid] + maybe Categories.
        tokens = [self.class_embedding.tile(x.shape[0], 1, 1), x]  # NLD
        pos_embed = [self.positional_embedding]  # LD

        if self.n_categories and c is not None:  # If c is None, we don't add the token
            tokens += [self.c_embedding(c).unsqueeze(1)]  # ND -> N1D
            pos_embed += [self.c_pos_embedding]  # 1D

        x = torch.cat(
            tokens,
            dim=1,
        )  # shape = [*, grid ** 2 + 1|2, width] = N(L|L+1)D
        pos_embed = torch.cat(pos_embed, dim=0).unsqueeze(0)  # 1(L|L+1)D

        x = x + pos_embed
        x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  # NLD -> LND

        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD

        x = self.ln_post(x[:, 0, :])

        x = x @ self.proj

        return x


# SIZES
B32_Params = {
    "input_resolution": 224,
    "patch_size": 32,
    "width": 768,
    "layers": 12,
    "heads": 12,
    "output_dim": 512,
}

B16_Params = {
    "input_resolution": 224,
    "patch_size": 16,
    "width": 768,
    "layers": 12,
    "heads": 12,
    "output_dim": 512,
}

params = {"B32": B32_Params, "B16": B16_Params}