Spaces:
Running
Running
File size: 5,505 Bytes
c45703e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
categories = [
"Bags",
"Feet",
"Hands",
"Head",
"Lower Body",
"Neck",
"Outwear",
"Upper Body",
"Waist",
"Whole Body",
]
import torch
from torch import nn
from collections import OrderedDict
import logging
logger = logging.getLogger(__name__)
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
if self.weight.dtype != x.dtype:
orig_type = x.dtype
ret = super().forward(x.type(self.weight.dtype))
return ret.type(orig_type)
else:
return super().forward(x)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
d_model: int,
n_head: int,
attn_mask: torch.Tensor = None,
):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict(
[
(
"c_fc",
nn.Linear(d_model, d_model * 4),
),
("gelu", QuickGELU()),
(
"c_proj",
nn.Linear(d_model * 4, d_model),
),
]
)
)
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = (
self.attn_mask.to(dtype=x.dtype, device=x.device)
if self.attn_mask is not None
else None
)
return self.attn(
x,
x,
x,
need_weights=False,
attn_mask=self.attn_mask,
)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(
self,
width: int,
layers: int,
heads: int,
attn_mask: torch.Tensor = None,
):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(
*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]
)
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class ConditionalViT(nn.Module):
def __init__(
self,
input_resolution: int,
patch_size: int,
width: int,
layers: int,
heads: int,
output_dim: int,
n_categories: int = None,
**kwargs,
):
if kwargs:
logger.warning(f"Got unused kwargs : {kwargs}")
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
scale = width**-0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.n_categories = n_categories
if self.n_categories:
self.c_embedding = nn.Embedding(self.n_categories, width)
self.c_pos_embedding = nn.Parameter(scale * torch.randn(1, width))
self.positional_embedding = nn.Parameter(
scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)
)
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads)
self.ln_post = LayerNorm(width)
self.logit_scale = torch.nn.Parameter(torch.ones([]) * 4.6052)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def forward(self, imgs: torch.Tensor, c: torch.Tensor = None):
"""
imgs : Batch of images
c : category indices. 0 = "No given category".
"""
x = self.conv1(imgs) # shape = [*, width, grid, grid]
# shape = [*, width, grid ** 2]
x = x.reshape(x.shape[0], x.shape[1], -1)
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
# [CLS, grid] + maybe Categories.
tokens = [self.class_embedding.tile(x.shape[0], 1, 1), x] # NLD
pos_embed = [self.positional_embedding] # LD
if self.n_categories and c is not None: # If c is None, we don't add the token
tokens += [self.c_embedding(c).unsqueeze(1)] # ND -> N1D
pos_embed += [self.c_pos_embedding] # 1D
x = torch.cat(
tokens,
dim=1,
) # shape = [*, grid ** 2 + 1|2, width] = N(L|L+1)D
pos_embed = torch.cat(pos_embed, dim=0).unsqueeze(0) # 1(L|L+1)D
x = x + pos_embed
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x[:, 0, :])
x = x @ self.proj
return x
# SIZES
B32_Params = {
"input_resolution": 224,
"patch_size": 32,
"width": 768,
"layers": 12,
"heads": 12,
"output_dim": 512,
}
B16_Params = {
"input_resolution": 224,
"patch_size": 16,
"width": 768,
"layers": 12,
"heads": 12,
"output_dim": 512,
}
params = {"B32": B32_Params, "B16": B16_Params} |