Spaces:
Running
Running
import pandas as pd | |
import torch | |
import faiss | |
import gradio as gr | |
import base64 | |
from PIL import Image | |
from io import BytesIO | |
from src.model import ConditionalViT, B16_Params, categories | |
from src.transform import valid_tf | |
from src.process_images import process_img, make_img_html | |
from src.examples import ExamplesHandler | |
from src.js_loader import JavaScriptLoader | |
# Load Model | |
m = ConditionalViT(**B16_Params, n_categories=len(categories)) | |
m.load_state_dict(torch.load("./artifacts/cat_condvit_b16.pth", map_location="cpu")) | |
m.eval() | |
# Load data | |
index = faiss.read_index("./artifacts/gallery_index.faiss") | |
gal_imgs = pd.read_parquet("./artifacts/gallery_imgs.parquet") | |
tfs = valid_tf((224, 224)) | |
K = 5 | |
examples = [ | |
["examples/3.jpg", "Outwear"], | |
["examples/3.jpg", "Lower Body"], | |
["examples/3.jpg", "Feet"], | |
["examples/757.jpg", "Bags"], | |
["examples/757.jpg", "Upper Body"], | |
["examples/769.jpg", "Upper Body"], | |
["examples/1811.jpg", "Lower Body"], | |
["examples/1811.jpg", "Bags"], | |
] | |
def retrieval(image, category): | |
if image is None or category is None: return | |
q_emb = m(tfs(image).unsqueeze(0), torch.tensor([category])) | |
r = index.search(q_emb, K) | |
imgs = [process_img(idx, gal_imgs) for idx in r[1][0]] | |
html = [make_img_html(i) for i in imgs] | |
html += ["<p></p>"] # Avoid Gradio's last-child{margin-bottom:0!important;} | |
return "\n".join(html) | |
JavaScriptLoader("src/custom_functions.js") | |
with gr.Blocks(css="src/style.css") as demo: | |
with gr.Column(): | |
gr.Markdown(""" | |
# Conditional ViT Demo | |
[[`Paper`](https://arxiv.org/abs/2306.02928)] | |
[[`Code`](https://github.com/Simon-Lepage/CondViT-LRVSF)] | |
[[`Dataset`](https://huggingface.co/datasets/Slep/LAION-RVS-Fashion)] | |
*Running on 2 vCPU, 16Go RAM.* | |
- **Model :** Categorical CondViT-B/16 | |
- **Gallery :** 93K images. | |
""") | |
# Input section | |
with gr.Row(): | |
img = gr.Image(label="Query Image", type="pil", elem_id="query_img") | |
with gr.Column(): | |
cat = gr.Dropdown(choices = categories, label="Category", value="Upper Body", type='index', elem_id="dropdown") | |
submit = gr.Button("Submit") | |
# Examples | |
gr.Examples(examples, inputs=[img, cat], fn=retrieval, elem_id = "preset_examples", examples_per_page=100) | |
gr.HTML(value=ExamplesHandler(examples).to_html(), label = "examples", elem_id = "html_examples") | |
# Outputs | |
gr.Markdown("# Retrieved Items") | |
out = gr.HTML(label="Results", elem_id = "html_output") | |
submit.click(fn=retrieval, inputs=[img, cat], outputs=out) | |
demo.launch() |