Spaces:
Runtime error
Runtime error
import argparse | |
import numpy | |
import numpy as np | |
import pydub | |
import torch | |
import commons | |
import utils | |
from models import SynthesizerTrn | |
from text import cleaned_text_to_sequence, get_bert | |
from text.cleaner import clean_text | |
from text.symbols import symbols | |
# 当前版本信息 | |
latest_version = "2.0" | |
def get_net_g(model_path: str, device: str, hps): | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
).to(device) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) | |
return net_g | |
def get_text(text, language_str, hps, device): | |
# 在此处实现当前版本的get_text | |
norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
if hps.data.add_blank: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert = get_bert(norm_text, word2ph, language_str, device) | |
del word2ph | |
assert bert.shape[-1] == len(phone), phone | |
if language_str == "ZH": | |
bert = bert | |
sh_bert = torch.zeros(1024, len(phone)) | |
en_bert = torch.zeros(1024, len(phone)) | |
elif language_str == "SH": | |
bert = torch.zeros(1024, len(phone)) | |
sh_bert = bert | |
en_bert = torch.zeros(1024, len(phone)) | |
elif language_str == "EN": | |
bert = torch.zeros(1024, len(phone)) | |
sh_bert = torch.zeros(1024, len(phone)) | |
en_bert = bert | |
else: | |
raise ValueError("language_str should be ZH, SH or EN") | |
assert bert.shape[-1] == len(phone), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, sh_bert, en_bert, phone, tone, language | |
def infer( | |
text, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
sid, | |
language, | |
hps, | |
net_g, | |
device, | |
): | |
bert, sh_bert, en_bert, phones, tones, lang_ids = get_text(text, language, hps, device) | |
with torch.no_grad(): | |
x_tst = phones.to(device).unsqueeze(0) | |
tones = tones.to(device).unsqueeze(0) | |
lang_ids = lang_ids.to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
sh_bert = sh_bert.to(device).unsqueeze(0) | |
en_bert = en_bert.to(device).unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) | |
del phones | |
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) | |
audio = ( | |
net_g.infer( | |
x_tst, | |
x_tst_lengths, | |
speakers, | |
tones, | |
lang_ids, | |
bert, | |
sh_bert, | |
en_bert, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
)[0][0, 0] | |
.data.cpu() | |
.float() | |
.numpy() | |
) | |
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers | |
torch.cuda.empty_cache() | |
return audio | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--config', type=str, default='configs/config.json') | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--model_path', type=str, default='models/G_73000.pth') | |
parser.add_argument('--output', type=str, default='sample') | |
args = parser.parse_args() | |
hps = utils.get_hparams_from_file(args.config) | |
net_g = get_net_g(args.model_path, device=args.device, hps=hps) | |
# noise_scale = 0.667 | |
# noise_scale_w = 0.8 | |
# length_scale = 0.9 | |
sdp_ratio = 0 | |
noise_scale = 0.667 | |
noise_scale_w = 0.8 | |
length_scale = 0.9 | |
def do_sample(texts, sid, export_tag): | |
audio_data = numpy.array([], dtype=numpy.float32) | |
for (sub_text, language) in texts: | |
sub_audio_data = infer(sub_text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language, hps, net_g, args.device) | |
audio_data = np.concatenate((audio_data, sub_audio_data)) | |
audio_data = audio_data / numpy.abs(audio_data).max() | |
audio_data = audio_data * 32767 | |
audio_data = audio_data.astype(numpy.int16) | |
sound = pydub.AudioSegment(audio_data, frame_rate=hps.data.sampling_rate, sample_width=audio_data.dtype.itemsize, channels=1) | |
export_filename = args.output + export_tag + sid + '.mp3' | |
sound.export(export_filename, format='mp3') | |
print(export_filename) | |
text = [('我觉得有点贵。', 'ZH'), ('so expensive, can they?', 'EN'), ('哈巨,吃不消它。', 'SH')] | |
do_sample(text, '小庄', '_1_') | |
do_sample(text, '小嘟', '_1_') | |
do_sample(text, 'Jane', '_1_') | |
do_sample(text, '小贝', '_1_') | |
do_sample(text, '老克勒', '_1_') | |
do_sample(text, '美琳', '_1_') | |
pass | |
if __name__ == "__main__": | |
main() | |