Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow import keras
|
4 |
+
from keras import models
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
import io
|
9 |
+
|
10 |
+
# Some constants to be used in the program
|
11 |
+
IMG_SIZE = (32,32)
|
12 |
+
|
13 |
+
# Character mapping for the character prediction
|
14 |
+
char_map = {
|
15 |
+
0:'๐(0)', 1:'๐(1)', 2:'๐(2)', 3:'๐(3)', 4: '๐(4)', 5: '๐(5)', 6: '๐(6)', 7: '๐(7)',
|
16 |
+
8:'๐(8)', 9:'๐(9)', 10:'๐(OM)', 11:'๐(A)', 12: '๐(AA)', 13: '๐๐
(AH)', 14: '๐(I)',
|
17 |
+
15:'๐(II)',16:'๐(U)', 17:'๐
(UU)', 18:'๐(R)', 19: '๐๐บ(RR)', 20: '๐(E)', 21: '๐(AI)', 22: '๐(O)',
|
18 |
+
23:'๐(AU)', 24:'๐(L)', 25:'๐(LL)', 26:'๐(KA)', 27: '๐๐๐ณ(KSA)', 28: '๐(KHA)',29: '๐(GA)', 30: '๐(GHA)',
|
19 |
+
31:'๐(NGA)',32:'๐(CA)', 33:'๐(CHA)', 34:'๐(JA)', 35: '๐๐๐(JรฑA)', 36: '๐(JHA)',37: '๐(JHA-alt)',38: '๐(NYA)',
|
20 |
+
39:'๐(TA)', 40:'๐(TTHA)', 41:'๐(DDA)', 42:'๐(DHA)', 43: '๐(NNA)', 44: '๐(TA)', 45: '๐๐๐ฌ(TRA)', 46: '๐ (THA)',
|
21 |
+
47:'๐ก(DA)', 49:'๐ฃ(NA)', 50:'๐ฅ(PA)', 51:'๐ฆ(PHA)', 52: '๐ง(BA)', 53: '๐จ(BHA)', 54: '๐ฉ(MA)', 55: '๐ซ(YA)',
|
22 |
+
56:'๐ฌ(RA)', 57: '๐ฎ(LA)', 58:'๐ฐ(WA)', 59:'๐ฑ(SHA)', 60: '๐ฑ(SHA-alt)', 61: '๐ฒ(SSA)', 62: '๐ณ(SA)', 63: '๐ด(HA)'
|
23 |
+
}
|
24 |
+
|
25 |
+
# Importing the model
|
26 |
+
model = models.load_model('tf_model.h5')
|
27 |
+
|
28 |
+
# Function for reading image
|
29 |
+
def file_to_array(file) -> np.ndarray:
|
30 |
+
image = np.array(Image.open(io.BytesIO(file)))
|
31 |
+
|
32 |
+
return image
|
33 |
+
|
34 |
+
# Main Streamlit app
|
35 |
+
def main():
|
36 |
+
st.title("Character Recognition")
|
37 |
+
st.write("Upload an image and the model will predict the character")
|
38 |
+
|
39 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
40 |
+
|
41 |
+
if uploaded_file is not None:
|
42 |
+
image = Image.open(uploaded_file)
|
43 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
44 |
+
|
45 |
+
if st.button('Predict'):
|
46 |
+
image = cv2.resize(np.array(image), IMG_SIZE)
|
47 |
+
image = image.astype('float32')
|
48 |
+
image = np.expand_dims(image, axis=0)
|
49 |
+
|
50 |
+
output = model.predict(image)
|
51 |
+
result = char_map[np.argmax(output)]
|
52 |
+
|
53 |
+
st.success(f'Prediction: {result}')
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
main()
|