File size: 5,357 Bytes
3378b23
4dd424d
550e87b
4dd424d
be06203
 
6a2d3ac
 
c3b9b9a
 
4bcb630
4dd424d
27a479a
4dd424d
 
be06203
6a2d3ac
c3b9b9a
 
7b594ac
 
 
 
 
6a2d3ac
b8c8744
83ed4d1
 
 
 
 
 
 
 
 
6a2d3ac
 
 
 
 
 
4bcb630
c3b9b9a
4bcb630
c3b9b9a
4bcb630
 
83ed4d1
c3b9b9a
 
4bcb630
c3b9b9a
6a2d3ac
 
 
c3b9b9a
6a2d3ac
c3b9b9a
f6c85ec
c89ea47
f6c85ec
c3b9b9a
c89ea47
 
 
 
 
6a2d3ac
 
b8c8744
6a2d3ac
 
 
c89ea47
6a2d3ac
bc46efe
b8c8744
 
 
bc46efe
6a2d3ac
5b28103
27a479a
6a2d3ac
b8c8744
6a2d3ac
 
 
7b594ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a2d3ac
7b594ac
 
 
 
 
 
6a2d3ac
 
7b594ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a2d3ac
7b594ac
 
3378b23
b8c8744
3378b23
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import json
import os

import sqlalchemy
import streamlit as st
import streamlit.components.v1 as components
from langchain import OpenAI
from langchain.callbacks import get_openai_callback
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.embeddings import GPT4AllEmbeddings

from chat_history import insert_chat_history, insert_chat_history_articles
from css import load_css
from custom_pgvector import CustomPGVector
from message import Message

CONNECTION_STRING = "postgresql+psycopg2://localhost/sorbobot"

st.set_page_config(layout="wide")

st.title("Sorbobot - Le futur de la recherche scientifique interactive")

chat_column, doc_column = st.columns([2, 1])


def connect() -> sqlalchemy.engine.Connection:
    engine = sqlalchemy.create_engine(CONNECTION_STRING)
    conn = engine.connect()
    return conn


conn = connect()


def initialize_session_state():
    if "history" not in st.session_state:
        st.session_state.history = []
    if "token_count" not in st.session_state:
        st.session_state.token_count = 0
    if "conversation" not in st.session_state:
        embeddings = GPT4AllEmbeddings()

        db = CustomPGVector(
            embedding_function=embeddings,
            table_name="article",
            column_name="abstract_embedding",
            connection=conn,
        )

        retriever = db.as_retriever()

        llm = OpenAI(
            temperature=0,
            openai_api_key=os.environ["OPENAI_API_KEY"],
            model="text-davinci-003",
        )

        memory = ConversationBufferMemory(
            output_key="answer", memory_key="chat_history", return_messages=True
        )
        st.session_state.conversation = ConversationalRetrievalChain.from_llm(
            llm=llm,
            retriever=retriever,
            verbose=True,
            memory=memory,
            return_source_documents=True,
        )


def on_click_callback():
    with get_openai_callback() as cb:
        human_prompt = st.session_state.human_prompt
        llm_response = st.session_state.conversation(human_prompt)
        st.session_state.history.append(Message("human", human_prompt))
        st.session_state.history.append(
            Message(
                "ai", llm_response["answer"], documents=llm_response["source_documents"]
            )
        )
        st.session_state.token_count += cb.total_tokens
        history_id = insert_chat_history(conn, human_prompt, llm_response["answer"])
        insert_chat_history_articles(conn, history_id, llm_response["source_documents"])


load_css()
initialize_session_state()

with chat_column:
    chat_placeholder = st.container()
    prompt_placeholder = st.form("chat-form")
    information_placeholder = st.empty()

    with chat_placeholder:
        for chat in st.session_state.history:
            div = f"""
                <div class="chat-row 
                    {'' if chat.origin == 'ai' else 'row-reverse'}">
                    <img class="chat-icon" src="./app/static/{
                        'ai_icon.png' if chat.origin == 'ai' 
                                    else 'user_icon.png'}"
                        width=32 height=32>
                    <div class="chat-bubble
                    {'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
                        &#8203;{chat.message}
                    </div>
                </div>
            """
            st.markdown(div, unsafe_allow_html=True)

        for _ in range(3):
            st.markdown("")

    with prompt_placeholder:
        st.markdown("**Chat**")
        cols = st.columns((6, 1))
        cols[0].text_input(
            "Chat",
            value="Hello bot",
            label_visibility="collapsed",
            key="human_prompt",
        )
        cols[1].form_submit_button(
            "Submit",
            type="primary",
            on_click=on_click_callback,
        )

    information_placeholder.caption(
        f"""
    Used {st.session_state.token_count} tokens \n
    Debug Langchain conversation: 
    {st.session_state.conversation.memory.buffer}
    """
    )

    components.html(
        """
    <script>
    const streamlitDoc = window.parent.document;

    const buttons = Array.from(
        streamlitDoc.querySelectorAll('.stButton > button')
    );
    const submitButton = buttons.find(
        el => el.innerText === 'Submit'
    );

    streamlitDoc.addEventListener('keydown', function(e) {
        switch (e.key) {
            case 'Enter':
                submitButton.click();
                break;
        }
    });
    </script>
    """,
        height=0,
        width=0,
    )

with doc_column:
    if len(st.session_state.history) > 0:
        st.markdown("**Source documents**")
        for doc in st.session_state.history[-1].documents:
            doc_content = json.loads(doc.page_content)

            expander = st.expander(doc_content["title"])
            expander.markdown("**" + doc_content["doi"] + "**")
            expander.markdown(doc_content["abstract"])
            expander.markdown("**Authors** : " + doc_content["authors"])
            expander.markdown("**Keywords** : " + doc_content["keywords"])
            expander.markdown("**Distance** : " + str(doc_content["distance"]))