Spaces:
Sleeping
Sleeping
File size: 5,357 Bytes
3378b23 4dd424d 550e87b 4dd424d be06203 6a2d3ac c3b9b9a 4bcb630 4dd424d 27a479a 4dd424d be06203 6a2d3ac c3b9b9a 7b594ac 6a2d3ac b8c8744 83ed4d1 6a2d3ac 4bcb630 c3b9b9a 4bcb630 c3b9b9a 4bcb630 83ed4d1 c3b9b9a 4bcb630 c3b9b9a 6a2d3ac c3b9b9a 6a2d3ac c3b9b9a f6c85ec c89ea47 f6c85ec c3b9b9a c89ea47 6a2d3ac b8c8744 6a2d3ac c89ea47 6a2d3ac bc46efe b8c8744 bc46efe 6a2d3ac 5b28103 27a479a 6a2d3ac b8c8744 6a2d3ac 7b594ac 6a2d3ac 7b594ac 6a2d3ac 7b594ac 6a2d3ac 7b594ac 3378b23 b8c8744 3378b23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import json
import os
import sqlalchemy
import streamlit as st
import streamlit.components.v1 as components
from langchain import OpenAI
from langchain.callbacks import get_openai_callback
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.embeddings import GPT4AllEmbeddings
from chat_history import insert_chat_history, insert_chat_history_articles
from css import load_css
from custom_pgvector import CustomPGVector
from message import Message
CONNECTION_STRING = "postgresql+psycopg2://localhost/sorbobot"
st.set_page_config(layout="wide")
st.title("Sorbobot - Le futur de la recherche scientifique interactive")
chat_column, doc_column = st.columns([2, 1])
def connect() -> sqlalchemy.engine.Connection:
engine = sqlalchemy.create_engine(CONNECTION_STRING)
conn = engine.connect()
return conn
conn = connect()
def initialize_session_state():
if "history" not in st.session_state:
st.session_state.history = []
if "token_count" not in st.session_state:
st.session_state.token_count = 0
if "conversation" not in st.session_state:
embeddings = GPT4AllEmbeddings()
db = CustomPGVector(
embedding_function=embeddings,
table_name="article",
column_name="abstract_embedding",
connection=conn,
)
retriever = db.as_retriever()
llm = OpenAI(
temperature=0,
openai_api_key=os.environ["OPENAI_API_KEY"],
model="text-davinci-003",
)
memory = ConversationBufferMemory(
output_key="answer", memory_key="chat_history", return_messages=True
)
st.session_state.conversation = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
verbose=True,
memory=memory,
return_source_documents=True,
)
def on_click_callback():
with get_openai_callback() as cb:
human_prompt = st.session_state.human_prompt
llm_response = st.session_state.conversation(human_prompt)
st.session_state.history.append(Message("human", human_prompt))
st.session_state.history.append(
Message(
"ai", llm_response["answer"], documents=llm_response["source_documents"]
)
)
st.session_state.token_count += cb.total_tokens
history_id = insert_chat_history(conn, human_prompt, llm_response["answer"])
insert_chat_history_articles(conn, history_id, llm_response["source_documents"])
load_css()
initialize_session_state()
with chat_column:
chat_placeholder = st.container()
prompt_placeholder = st.form("chat-form")
information_placeholder = st.empty()
with chat_placeholder:
for chat in st.session_state.history:
div = f"""
<div class="chat-row
{'' if chat.origin == 'ai' else 'row-reverse'}">
<img class="chat-icon" src="./app/static/{
'ai_icon.png' if chat.origin == 'ai'
else 'user_icon.png'}"
width=32 height=32>
<div class="chat-bubble
{'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
​{chat.message}
</div>
</div>
"""
st.markdown(div, unsafe_allow_html=True)
for _ in range(3):
st.markdown("")
with prompt_placeholder:
st.markdown("**Chat**")
cols = st.columns((6, 1))
cols[0].text_input(
"Chat",
value="Hello bot",
label_visibility="collapsed",
key="human_prompt",
)
cols[1].form_submit_button(
"Submit",
type="primary",
on_click=on_click_callback,
)
information_placeholder.caption(
f"""
Used {st.session_state.token_count} tokens \n
Debug Langchain conversation:
{st.session_state.conversation.memory.buffer}
"""
)
components.html(
"""
<script>
const streamlitDoc = window.parent.document;
const buttons = Array.from(
streamlitDoc.querySelectorAll('.stButton > button')
);
const submitButton = buttons.find(
el => el.innerText === 'Submit'
);
streamlitDoc.addEventListener('keydown', function(e) {
switch (e.key) {
case 'Enter':
submitButton.click();
break;
}
});
</script>
""",
height=0,
width=0,
)
with doc_column:
if len(st.session_state.history) > 0:
st.markdown("**Source documents**")
for doc in st.session_state.history[-1].documents:
doc_content = json.loads(doc.page_content)
expander = st.expander(doc_content["title"])
expander.markdown("**" + doc_content["doi"] + "**")
expander.markdown(doc_content["abstract"])
expander.markdown("**Authors** : " + doc_content["authors"])
expander.markdown("**Keywords** : " + doc_content["keywords"])
expander.markdown("**Distance** : " + str(doc_content["distance"]))
|