File size: 20,009 Bytes
503aad2
4dd424d
503aad2
 
4dd424d
503aad2
5c20978
244cbec
503aad2
4dd424d
503aad2
 
 
 
 
 
4dd424d
244cbec
503aad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83ed4d1
503aad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83ed4d1
503aad2
 
 
 
 
 
 
83ed4d1
503aad2
 
 
 
 
 
 
 
83ed4d1
503aad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83ed4d1
503aad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a5c81b
503aad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a5c81b
503aad2
 
 
 
 
 
 
 
3378b23
 
 
 
 
 
6946652
3378b23
 
 
503aad2
3378b23
503aad2
3378b23
503aad2
 
 
 
 
 
 
 
 
5c20978
 
 
 
 
24d1b6f
5c20978
 
 
 
 
 
 
 
503aad2
5c20978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503aad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a5c81b
503aad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
from __future__ import annotations

import contextlib
import enum
import json
import logging
import struct
from typing import Any, Dict, Generator, Iterable, List, Optional, Tuple, Type

import pandas as pd
import sqlalchemy
from langchain.docstore.document import Document
from langchain.schema.embeddings import Embeddings
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.base import VectorStore
from pgvector.sqlalchemy import Vector
from sqlalchemy import delete, text
from sqlalchemy.orm import Session, declarative_base


class DistanceStrategy(str, enum.Enum):
    """Enumerator of the Distance strategies."""

    EUCLIDEAN = "l2"
    COSINE = "cosine"
    MAX_INNER_PRODUCT = "inner"


DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE

Base = declarative_base()  # type: Any


_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"


def _results_to_docs(docs_and_scores: Any) -> List[Document]:
    """Return docs from docs and scores."""
    return [doc for doc, _ in docs_and_scores]


class Article(Base):
    """Embedding store."""

    __tablename__ = "article"

    id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True, nullable=False)
    title = sqlalchemy.Column(sqlalchemy.String, nullable=True)
    abstract = sqlalchemy.Column(sqlalchemy.String, nullable=True)
    embedding: Vector = sqlalchemy.Column("abstract_embedding", Vector(None))
    doi = sqlalchemy.Column(sqlalchemy.String, nullable=True)


class CustomPGVector(VectorStore):
    """`Postgres`/`PGVector` vector store.

    To use, you should have the ``pgvector`` python package installed.

    Args:
        connection: Postgres connection string.
        embedding_function: Any embedding function implementing
            `langchain.embeddings.base.Embeddings` interface.
        table_name: The name of the collection to use. (default: langchain)
            NOTE: This is not the name of the table, but the name of the collection.
            The tables will be created when initializing the store (if not exists)
            So, make sure the user has the right permissions to create tables.
        distance_strategy: The distance strategy to use. (default: COSINE)
        pre_delete_collection: If True, will delete the collection if it exists.
            (default: False). Useful for testing.

    Example:
        .. code-block:: python

            from langchain.vectorstores import PGVector
            from langchain.embeddings.openai import OpenAIEmbeddings

            COLLECTION_NAME = "state_of_the_union_test"
            embeddings = OpenAIEmbeddings()
            vectorestore = PGVector.from_documents(
                embedding=embeddings,
                documents=docs,
                table_name=COLLECTION_NAME,
                connection=connection,
            )


    """

    def __init__(
        self,
        connection: sqlalchemy.engine.Connection,
        embedding_function: Embeddings,
        table_name: str,
        column_name: str,
        collection_metadata: Optional[dict] = None,
        distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
        pre_delete_collection: bool = False,
        logger: Optional[logging.Logger] = None,
    ) -> None:
        self._conn = connection
        self.embedding_function = embedding_function
        self.table_name = table_name
        self.column_name = column_name
        self.collection_metadata = collection_metadata
        self._distance_strategy = distance_strategy
        self.pre_delete_collection = pre_delete_collection
        self.logger = logger or logging.getLogger(__name__)
        self.__post_init__()

    def __post_init__(
        self,
    ) -> None:
        """
        Initialize the store.
        """
        # self._conn = self.connect()
        self.create_vector_extension()

        self.EmbeddingStore = Article

    @property
    def embeddings(self) -> Embeddings:
        return self.embedding_function

    def create_vector_extension(self) -> None:
        try:
            with Session(self._conn) as session:
                statement = sqlalchemy.text("CREATE EXTENSION IF NOT EXISTS vector")
                session.execute(statement)
                session.commit()
        except Exception as e:
            self.logger.exception(e)

    def drop_tables(self) -> None:
        with self._conn.begin():
            Base.metadata.drop_all(self._conn)

    @contextlib.contextmanager
    def _make_session(self) -> Generator[Session, None, None]:
        """Create a context manager for the session, bind to _conn string."""
        yield Session(self._conn)

    def delete(
        self,
        ids: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> None:
        """Delete vectors by ids.

        Args:
            ids: List of ids to delete.
        """
        with Session(self._conn) as session:
            if ids is not None:
                self.logger.debug(
                    "Trying to delete vectors by ids (represented by the model "
                    "using the custom ids field)"
                )
                stmt = delete(self.EmbeddingStore).where(
                    self.EmbeddingStore.custom_id.in_(ids)
                )
                session.execute(stmt)
            session.commit()

    @classmethod
    def __from(
        cls,
        texts: List[str],
        embeddings: List[List[float]],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        table_name: str = "article",
        distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
        connection_string: Optional[str] = None,
        pre_delete_collection: bool = False,
        **kwargs: Any,
    ) -> CustomPGVector:
        if not metadatas:
            metadatas = [{} for _ in texts]
        if connection_string is None:
            connection_string = cls.get_connection_string(kwargs)

        store = cls(
            connection_string=connection_string,
            table_name=table_name,
            embedding_function=embedding,
            distance_strategy=distance_strategy,
            pre_delete_collection=pre_delete_collection,
            **kwargs,
        )

        store.add_embeddings(
            texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
        )

        return store

    def add_embeddings(
        self,
        texts: Iterable[str],
        embeddings: List[List[float]],
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> List[str]:
        """Add embeddings to the vectorstore.

        Args:
            texts: Iterable of strings to add to the vectorstore.
            embeddings: List of list of embedding vectors.
            metadatas: List of metadatas associated with the texts.
            kwargs: vectorstore specific parameters
        """
        if not metadatas:
            metadatas = [{} for _ in texts]

        with Session(self._conn) as session:
            # collection = self.get_collection(session)
            # if not collection:
            #     raise ValueError("Collection not found")
            for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
                embedding_store = self.EmbeddingStore(
                    embedding=embedding,
                    document=text,
                    cmetadata=metadata,
                    custom_id=id,
                )
                session.add(embedding_store)
            session.commit()

        return ids

    def add_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> List[str]:
        """Run more texts through the embeddings and add to the vectorstore.

        Args:
            texts: Iterable of strings to add to the vectorstore.
            metadatas: Optional list of metadatas associated with the texts.
            kwargs: vectorstore specific parameters

        Returns:
            List of ids from adding the texts into the vectorstore.
        """
        embeddings = self.embedding_function.embed_documents(list(texts))
        return self.add_embeddings(
            texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
        )

    def similarity_search(
        self,
        query: str,
        k: int = 4,
        filter: Optional[dict] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Run similarity search with PGVector with distance.

        Args:
            query (str): Query text to search for.
            k (int): Number of results to return. Defaults to 4.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List of Documents most similar to the query.
        """
        embedding = self.embedding_function.embed_query(text=query)
        return self.similarity_search_by_vector(
            embedding=embedding,
            k=k,
        )

    def similarity_search_with_score(
        self,
        query: str,
        k: int = 4,
        filter: Optional[dict] = None,
    ) -> List[Tuple[Document, float]]:
        """Return docs most similar to query.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List of Documents most similar to the query and score for each.
        """
        embedding = self.embedding_function.embed_query(query)
        docs = self.similarity_search_with_score_by_vector(
            embedding=embedding, k=k
        )
        return docs

    @property
    def distance_strategy(self) -> Any:
        if self._distance_strategy == DistanceStrategy.EUCLIDEAN:
            return self.EmbeddingStore.embedding.l2_distance
        elif self._distance_strategy == DistanceStrategy.COSINE:
            return self.EmbeddingStore.embedding.cosine_distance
        elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
            return self.EmbeddingStore.embedding.max_inner_product
        else:
            raise ValueError(
                f"Got unexpected value for distance: {self._distance_strategy}. "
                f"Should be one of {', '.join([ds.value for ds in DistanceStrategy])}."
            )

    def similarity_search_with_score_by_vector(
        self,
        embedding: List[float],
        k: int = 4,
    ) -> List[Tuple[Document, float]]:
        results = self.__query_collection(embedding=embedding, k=k)

        return self._results_to_docs_and_scores(results)

    def _results_to_docs_and_scores(self, results: Any) -> List[Tuple[Document, float]]:
        """Return docs and scores from results."""
        docs = [
            (
                Document(
                    page_content=json.dumps({
                        "abstract": result["abstract"],
                        "id": result["id"],
                        "title": result["title"],
                        "authors": result["authors"],
                        "doi": result["doi"],
                        # "halID": result["halID"],
                        "keywords": result["keywords"],
                        "distance": result["distance"],
                    }),
                ),
                result["distance"] if self.embedding_function is not None else None,
            )
            for result in results
        ]
        return docs

    def __query_collection(
        self,
        embedding: List[float],
        k: int = 4,
    ) -> List[Any]:
        """Query the collection."""
        vector = bytearray(struct.pack("f" * len(embedding), *embedding))

        cursor = self._conn.execute(
            text("""
                with matches as (
                    select
                        rowid,
                        distance
                    from vss_article
                    where vss_search(
                        abstract_embedding,
                        :vector
                    )
                    limit :limit
                )
                select
                    article.id,
                    article.title,
                    article.doi,
                    article.abstract,
                    group_concat(keyword."name", ',') as keywords,
                    group_concat(author."name", ',') as authors,
                    matches.distance
                from matches
                left join article on matches.rowid = article.rowid
                left join article_keyword ak ON ak.article_id = article.id
                left join keyword on ak.keyword_id = keyword.id
                left join article_author ON article_author.article_id = article.id
                left join author on author.id = article_author.author_id
                group by article.id
                order by distance;
            """),
            {"vector": vector, "limit": k}
        )
        results = cursor.fetchall()
        results = pd.DataFrame(
            results,
            columns=[
                "id",
                "title",
                "doi",
                "abstract",
                "keywords",
                "authors",
                "distance",
            ],
        )
        results = results.to_dict(orient="records")
        return results

    def similarity_search_by_vector(
        self,
        embedding: List[float],
        k: int = 4,
        **kwargs: Any,
    ) -> List[Document]:
        """Return docs most similar to embedding vector.

        Args:
            embedding: Embedding to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List of Documents most similar to the query vector.
        """
        docs_and_scores = self.similarity_search_with_score_by_vector(
            embedding=embedding, k=k
        )
        return _results_to_docs(docs_and_scores)

    @classmethod
    def from_texts(
        cls: Type[PGVector],
        texts: List[str],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        table_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
        distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
        ids: Optional[List[str]] = None,
        pre_delete_collection: bool = False,
        **kwargs: Any,
    ) -> PGVector:
        """
        Return VectorStore initialized from texts and embeddings.
        Postgres connection string is required
        "Either pass it as a parameter
        or set the PGVECTOR_CONNECTION_STRING environment variable.
        """
        embeddings = embedding.embed_documents(list(texts))

        return cls.__from(
            texts,
            embeddings,
            embedding,
            metadatas=metadatas,
            ids=ids,
            table_name=table_name,
            distance_strategy=distance_strategy,
            pre_delete_collection=pre_delete_collection,
            **kwargs,
        )

    @classmethod
    def from_embeddings(
        cls,
        text_embeddings: List[Tuple[str, List[float]]],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        table_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
        distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
        ids: Optional[List[str]] = None,
        pre_delete_collection: bool = False,
        **kwargs: Any,
    ) -> PGVector:
        """Construct PGVector wrapper from raw documents and pre-
        generated embeddings.

        Return VectorStore initialized from documents and embeddings.
        Postgres connection string is required
        "Either pass it as a parameter
        or set the PGVECTOR_CONNECTION_STRING environment variable.

        Example:
            .. code-block:: python

                from langchain.vectorstores import PGVector
                from langchain.embeddings import OpenAIEmbeddings
                embeddings = OpenAIEmbeddings()
                text_embeddings = embeddings.embed_documents(texts)
                text_embedding_pairs = list(zip(texts, text_embeddings))
                faiss = PGVector.from_embeddings(text_embedding_pairs, embeddings)
        """
        texts = [t[0] for t in text_embeddings]
        embeddings = [t[1] for t in text_embeddings]

        return cls.__from(
            texts,
            embeddings,
            embedding,
            metadatas=metadatas,
            ids=ids,
            table_name=table_name,
            distance_strategy=distance_strategy,
            pre_delete_collection=pre_delete_collection,
            **kwargs,
        )

    @classmethod
    def from_existing_index(
        cls: Type[PGVector],
        embedding: Embeddings,
        table_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
        distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
        pre_delete_collection: bool = False,
        **kwargs: Any,
    ) -> PGVector:
        """
        Get intsance of an existing PGVector store.This method will
        return the instance of the store without inserting any new
        embeddings
        """

        connection_string = cls.get_connection_string(kwargs)

        store = cls(
            connection_string=connection_string,
            table_name=table_name,
            embedding_function=embedding,
            distance_strategy=distance_strategy,
            pre_delete_collection=pre_delete_collection,
        )

        return store

    @classmethod
    def get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
        connection_string: str = get_from_dict_or_env(
            data=kwargs,
            key="connection_string",
            env_key="PGVECTOR_CONNECTION_STRING",
        )

        if not connection_string:
            raise ValueError(
                "Postgres connection string is required"
                "Either pass it as a parameter"
                "or set the PGVECTOR_CONNECTION_STRING environment variable."
            )

        return connection_string

    @classmethod
    def from_documents(
        cls: Type[CustomPGVector],
        documents: List[Document],
        embedding: Embeddings,
        table_name: str = "article",
        column_name: str = "embeding",
        distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
        ids: Optional[List[str]] = None,
        pre_delete_collection: bool = False,
        **kwargs: Any,
    ) -> CustomPGVector:
        """
        Return VectorStore initialized from documents and embeddings.
        Postgres connection string is required
        "Either pass it as a parameter
        or set the PGVECTOR_CONNECTION_STRING environment variable.
        """

        texts = [d.page_content for d in documents]
        metadatas = [d.metadata for d in documents]
        connection_string = cls.get_connection_string(kwargs)

        kwargs["connection_string"] = connection_string

        return cls.from_texts(
            texts=texts,
            pre_delete_collection=pre_delete_collection,
            embedding=embedding,
            distance_strategy=distance_strategy,
            metadatas=metadatas,
            ids=ids,
            table_name=table_name,
            column_name=column_name,
            **kwargs,
        )

    @classmethod
    def connection_string_from_db_params(
        cls,
        driver: str,
        host: str,
        port: int,
        database: str,
        user: str,
        password: str,
    ) -> str:
        """Return connection string from database parameters."""
        return f"postgresql+{driver}://{user}:{password}@{host}:{port}/{database}"