--- title: Demo app_file: gradio_demo/app.py sdk: gradio sdk_version: 5.12.0 ---

IDM-VTON: Improving Diffusion Models for Authentic Virtual Try-on in the Wild

This is the official implementation of the paper ["Improving Diffusion Models for Authentic Virtual Try-on in the Wild"](https://arxiv.org/abs/2403.05139). Star ⭐ us if you like it! --- ![teaser2](assets/teaser2.png)  ![teaser](assets/teaser.png)  ## Requirements ``` git clone https://github.com/yisol/IDM-VTON.git cd IDM-VTON conda env create -f environment.yaml conda activate idm ``` ## Data preparation ### VITON-HD You can download VITON-HD dataset from [VITON-HD](https://github.com/shadow2496/VITON-HD). After download VITON-HD dataset, move vitonhd_test_tagged.json into the test folder, and move vitonhd_train_tagged.json into the train folder. Structure of the Dataset directory should be as follows. ``` train |-- image |-- image-densepose |-- agnostic-mask |-- cloth |-- vitonhd_train_tagged.json test |-- image |-- image-densepose |-- agnostic-mask |-- cloth |-- vitonhd_test_tagged.json ``` ### DressCode You can download DressCode dataset from [DressCode](https://github.com/aimagelab/dress-code). We provide pre-computed densepose images and captions for garments [here](https://kaistackr-my.sharepoint.com/:u:/g/personal/cpis7_kaist_ac_kr/EaIPRG-aiRRIopz9i002FOwBDa-0-BHUKVZ7Ia5yAVVG3A?e=YxkAip). We used [detectron2](https://github.com/facebookresearch/detectron2) for obtaining densepose images, refer [here](https://github.com/sangyun884/HR-VITON/issues/45) for more details. After download the DressCode dataset, place image-densepose directories and caption text files as follows. ``` DressCode |-- dresses |-- images |-- image-densepose |-- dc_caption.txt |-- ... |-- lower_body |-- images |-- image-densepose |-- dc_caption.txt |-- ... |-- upper_body |-- images |-- image-densepose |-- dc_caption.txt |-- ... ``` ## Training ### Preparation Download pre-trained ip-adapter for sdxl(IP-Adapter/sdxl_models/ip-adapter-plus_sdxl_vit-h.bin) and image encoder(IP-Adapter/models/image_encoder) [here](https://github.com/tencent-ailab/IP-Adapter). ``` git clone https://huggingface.co/h94/IP-Adapter ``` Move ip-adapter to ckpt/ip_adapter, and image encoder to ckpt/image_encoder. Start training using python file with arguments, ``` accelerate launch train_xl.py \ --gradient_checkpointing --use_8bit_adam \ --output_dir=result --train_batch_size=6 \ --data_dir=DATA_DIR ``` or, you can simply run with the script file. ``` sh train_xl.sh ``` ## Inference ### VITON-HD Inference using python file with arguments, ``` accelerate launch inference.py \ --width 768 --height 1024 --num_inference_steps 30 \ --output_dir "result" \ --unpaired \ --data_dir "DATA_DIR" \ --seed 42 \ --test_batch_size 2 \ --guidance_scale 2.0 ``` or, you can simply run with the script file. ``` sh inference.sh ``` ### DressCode For DressCode dataset, put the category you want to generate images via category argument, ``` accelerate launch inference_dc.py \ --width 768 --height 1024 --num_inference_steps 30 \ --output_dir "result" \ --unpaired \ --data_dir "DATA_DIR" \ --seed 42 --test_batch_size 2 --guidance_scale 2.0 --category "upper_body" ``` or, you can simply run with the script file. ``` sh inference.sh ``` ## Start a local gradio demo Download checkpoints for human parsing [here](https://huggingface.co/spaces/yisol/IDM-VTON/tree/main/ckpt). Place the checkpoints under the ckpt folder. ``` ckpt |-- densepose |-- model_final_162be9.pkl |-- humanparsing |-- parsing_atr.onnx |-- parsing_lip.onnx |-- openpose |-- ckpts |-- body_pose_model.pth ``` Run the following command: ```python python gradio_demo/app.py ``` ## Acknowledgements Thanks [ZeroGPU](https://huggingface.co/zero-gpu-explorers) for providing free GPU. Thanks [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter) for base codes. Thanks [OOTDiffusion](https://github.com/levihsu/OOTDiffusion) and [DCI-VTON](https://github.com/bcmi/DCI-VTON-Virtual-Try-On) for masking generation. Thanks [SCHP](https://github.com/GoGoDuck912/Self-Correction-Human-Parsing) for human segmentation. Thanks [Densepose](https://github.com/facebookresearch/DensePose) for human densepose. ## Star History [![Star History Chart](https://api.star-history.com/svg?repos=yisol/IDM-VTON&type=Date)](https://star-history.com/#yisol/IDM-VTON&Date) ## Citation ``` @article{choi2024improving, title={Improving Diffusion Models for Authentic Virtual Try-on in the Wild}, author={Choi, Yisol and Kwak, Sangkyung and Lee, Kyungmin and Choi, Hyungwon and Shin, Jinwoo}, journal={arXiv preprint arXiv:2403.05139}, year={2024} } ``` ## License The codes and checkpoints in this repository are under the [CC BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).