|
|
|
"""
|
|
This module is responsible for handling the animation of faces using a combination of deep learning models and image processing techniques.
|
|
It provides a pipeline to generate realistic face animations by incorporating user-provided conditions such as facial expressions and environments.
|
|
The module utilizes various schedulers and utilities to optimize the animation process and ensure efficient performance.
|
|
|
|
Functions and Classes:
|
|
- StaticPipelineOutput: A class that represents the output of the animation pipeline, c
|
|
ontaining properties and methods related to the generated images.
|
|
- prepare_latents: A function that prepares the initial noise for the animation process,
|
|
scaling it according to the scheduler's requirements.
|
|
- prepare_condition: A function that processes the user-provided conditions
|
|
(e.g., facial expressions) and prepares them for use in the animation pipeline.
|
|
- decode_latents: A function that decodes the latent representations of the face animations into
|
|
their corresponding image formats.
|
|
- prepare_extra_step_kwargs: A function that prepares additional parameters for each step of
|
|
the animation process, such as the generator and eta values.
|
|
|
|
Dependencies:
|
|
- numpy: A library for numerical computing.
|
|
- torch: A machine learning library based on PyTorch.
|
|
- diffusers: A library for image-to-image diffusion models.
|
|
- transformers: A library for pre-trained transformer models.
|
|
|
|
Usage:
|
|
- To create an instance of the animation pipeline, provide the necessary components such as
|
|
the VAE, reference UNET, denoising UNET, face locator, and image processor.
|
|
- Use the pipeline's methods to prepare the latents, conditions, and extra step arguments as
|
|
required for the animation process.
|
|
- Generate the face animations by decoding the latents and processing the conditions.
|
|
|
|
Note:
|
|
- The module is designed to work with the diffusers library, which is based on
|
|
the paper "Diffusion Models for Image-to-Image Translation" (https://arxiv.org/abs/2102.02765).
|
|
- The face animations generated by this module should be used for entertainment purposes
|
|
only and should respect the rights and privacy of the individuals involved.
|
|
"""
|
|
import inspect
|
|
from dataclasses import dataclass
|
|
from typing import Callable, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from diffusers import DiffusionPipeline
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from diffusers.schedulers import (DDIMScheduler, DPMSolverMultistepScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
EulerDiscreteScheduler, LMSDiscreteScheduler,
|
|
PNDMScheduler)
|
|
from diffusers.utils import BaseOutput, is_accelerate_available
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
from einops import rearrange
|
|
from tqdm import tqdm
|
|
from transformers import CLIPImageProcessor
|
|
|
|
from hallo.models.mutual_self_attention import ReferenceAttentionControl
|
|
|
|
if is_accelerate_available():
|
|
from accelerate import cpu_offload
|
|
else:
|
|
raise ImportError("Please install accelerate via `pip install accelerate`")
|
|
|
|
|
|
@dataclass
|
|
class StaticPipelineOutput(BaseOutput):
|
|
"""
|
|
StaticPipelineOutput is a class that represents the output of the static pipeline.
|
|
It contains the images generated by the pipeline as a union of torch.Tensor and np.ndarray.
|
|
|
|
Attributes:
|
|
images (Union[torch.Tensor, np.ndarray]): The generated images.
|
|
"""
|
|
images: Union[torch.Tensor, np.ndarray]
|
|
|
|
|
|
class StaticPipeline(DiffusionPipeline):
|
|
"""
|
|
StaticPipelineOutput is a class that represents the output of the static pipeline.
|
|
It contains the images generated by the pipeline as a union of torch.Tensor and np.ndarray.
|
|
|
|
Attributes:
|
|
images (Union[torch.Tensor, np.ndarray]): The generated images.
|
|
"""
|
|
_optional_components = []
|
|
|
|
def __init__(
|
|
self,
|
|
vae,
|
|
reference_unet,
|
|
denoising_unet,
|
|
face_locator,
|
|
imageproj,
|
|
scheduler: Union[
|
|
DDIMScheduler,
|
|
PNDMScheduler,
|
|
LMSDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
],
|
|
):
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
reference_unet=reference_unet,
|
|
denoising_unet=denoising_unet,
|
|
face_locator=face_locator,
|
|
scheduler=scheduler,
|
|
imageproj=imageproj,
|
|
)
|
|
self.vae_scale_factor = 2 ** (
|
|
len(self.vae.config.block_out_channels) - 1)
|
|
self.clip_image_processor = CLIPImageProcessor()
|
|
self.ref_image_processor = VaeImageProcessor(
|
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
|
)
|
|
self.cond_image_processor = VaeImageProcessor(
|
|
vae_scale_factor=self.vae_scale_factor,
|
|
do_convert_rgb=True,
|
|
do_normalize=False,
|
|
)
|
|
|
|
def enable_vae_slicing(self):
|
|
"""
|
|
Enable VAE slicing.
|
|
|
|
This method enables slicing for the VAE model, which can help improve the performance of decoding latents when working with large images.
|
|
"""
|
|
self.vae.enable_slicing()
|
|
|
|
def disable_vae_slicing(self):
|
|
"""
|
|
Disable vae slicing.
|
|
|
|
This function disables the vae slicing for the StaticPipeline object.
|
|
It calls the `disable_slicing()` method of the vae model.
|
|
This is useful when you want to use the entire vae model for decoding latents
|
|
instead of slicing it for better performance.
|
|
"""
|
|
self.vae.disable_slicing()
|
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0):
|
|
"""
|
|
Offloads selected models to the GPU for increased performance.
|
|
|
|
Args:
|
|
gpu_id (int, optional): The ID of the GPU to offload models to. Defaults to 0.
|
|
"""
|
|
device = torch.device(f"cuda:{gpu_id}")
|
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
|
if cpu_offloaded_model is not None:
|
|
cpu_offload(cpu_offloaded_model, device)
|
|
|
|
@property
|
|
def _execution_device(self):
|
|
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
|
return self.device
|
|
for module in self.unet.modules():
|
|
if (
|
|
hasattr(module, "_hf_hook")
|
|
and hasattr(module._hf_hook, "execution_device")
|
|
and module._hf_hook.execution_device is not None
|
|
):
|
|
return torch.device(module._hf_hook.execution_device)
|
|
return self.device
|
|
|
|
def decode_latents(self, latents):
|
|
"""
|
|
Decode the given latents to video frames.
|
|
|
|
Parameters:
|
|
latents (torch.Tensor): The latents to be decoded. Shape: (batch_size, num_channels_latents, video_length, height, width).
|
|
|
|
Returns:
|
|
video (torch.Tensor): The decoded video frames. Shape: (batch_size, num_channels_latents, video_length, height, width).
|
|
"""
|
|
video_length = latents.shape[2]
|
|
latents = 1 / 0.18215 * latents
|
|
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
|
|
|
video = []
|
|
for frame_idx in tqdm(range(latents.shape[0])):
|
|
video.append(self.vae.decode(
|
|
latents[frame_idx: frame_idx + 1]).sample)
|
|
video = torch.cat(video)
|
|
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
|
video = (video / 2 + 0.5).clamp(0, 1)
|
|
|
|
video = video.cpu().float().numpy()
|
|
return video
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
"""
|
|
Prepare extra keyword arguments for the scheduler step.
|
|
|
|
Since not all schedulers have the same signature, this function helps to create a consistent interface for the scheduler.
|
|
|
|
Args:
|
|
generator (Optional[torch.Generator]): A random number generator for reproducibility.
|
|
eta (float): The eta parameter used with the DDIMScheduler. It should be between 0 and 1.
|
|
|
|
Returns:
|
|
dict: A dictionary containing the extra keyword arguments for the scheduler step.
|
|
"""
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(
|
|
inspect.signature(self.scheduler.step).parameters.keys()
|
|
)
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
|
|
accepts_generator = "generator" in set(
|
|
inspect.signature(self.scheduler.step).parameters.keys()
|
|
)
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def prepare_latents(
|
|
self,
|
|
batch_size,
|
|
num_channels_latents,
|
|
width,
|
|
height,
|
|
dtype,
|
|
device,
|
|
generator,
|
|
latents=None,
|
|
):
|
|
"""
|
|
Prepares the initial latents for the diffusion pipeline.
|
|
|
|
Args:
|
|
batch_size (int): The number of images to generate in one forward pass.
|
|
num_channels_latents (int): The number of channels in the latents tensor.
|
|
width (int): The width of the latents tensor.
|
|
height (int): The height of the latents tensor.
|
|
dtype (torch.dtype): The data type of the latents tensor.
|
|
device (torch.device): The device to place the latents tensor on.
|
|
generator (Optional[torch.Generator], optional): A random number generator
|
|
for reproducibility. Defaults to None.
|
|
latents (Optional[torch.Tensor], optional): Pre-computed latents to use as
|
|
initial conditions for the diffusion process. Defaults to None.
|
|
|
|
Returns:
|
|
torch.Tensor: The prepared latents tensor.
|
|
"""
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
height // self.vae_scale_factor,
|
|
width // self.vae_scale_factor,
|
|
)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(
|
|
shape, generator=generator, device=device, dtype=dtype
|
|
)
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
def prepare_condition(
|
|
self,
|
|
cond_image,
|
|
width,
|
|
height,
|
|
device,
|
|
dtype,
|
|
do_classififer_free_guidance=False,
|
|
):
|
|
"""
|
|
Prepares the condition for the face animation pipeline.
|
|
|
|
Args:
|
|
cond_image (torch.Tensor): The conditional image tensor.
|
|
width (int): The width of the output image.
|
|
height (int): The height of the output image.
|
|
device (torch.device): The device to run the pipeline on.
|
|
dtype (torch.dtype): The data type of the tensor.
|
|
do_classififer_free_guidance (bool, optional): Whether to use classifier-free guidance or not. Defaults to False.
|
|
|
|
Returns:
|
|
Tuple[torch.Tensor, torch.Tensor]: A tuple of processed condition and mask tensors.
|
|
"""
|
|
image = self.cond_image_processor.preprocess(
|
|
cond_image, height=height, width=width
|
|
).to(dtype=torch.float32)
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
if do_classififer_free_guidance:
|
|
image = torch.cat([image] * 2)
|
|
|
|
return image
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
ref_image,
|
|
face_mask,
|
|
width,
|
|
height,
|
|
num_inference_steps,
|
|
guidance_scale,
|
|
face_embedding,
|
|
num_images_per_prompt=1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator,
|
|
List[torch.Generator]]] = None,
|
|
output_type: Optional[str] = "tensor",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[
|
|
int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: Optional[int] = 1,
|
|
**kwargs,
|
|
):
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
device = self._execution_device
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
batch_size = 1
|
|
|
|
image_prompt_embeds = self.imageproj(face_embedding)
|
|
uncond_image_prompt_embeds = self.imageproj(
|
|
torch.zeros_like(face_embedding))
|
|
|
|
if do_classifier_free_guidance:
|
|
image_prompt_embeds = torch.cat(
|
|
[uncond_image_prompt_embeds, image_prompt_embeds], dim=0
|
|
)
|
|
|
|
reference_control_writer = ReferenceAttentionControl(
|
|
self.reference_unet,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
mode="write",
|
|
batch_size=batch_size,
|
|
fusion_blocks="full",
|
|
)
|
|
reference_control_reader = ReferenceAttentionControl(
|
|
self.denoising_unet,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
mode="read",
|
|
batch_size=batch_size,
|
|
fusion_blocks="full",
|
|
)
|
|
|
|
num_channels_latents = self.denoising_unet.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
width,
|
|
height,
|
|
face_embedding.dtype,
|
|
device,
|
|
generator,
|
|
)
|
|
latents = latents.unsqueeze(2)
|
|
|
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
|
|
ref_image_tensor = self.ref_image_processor.preprocess(
|
|
ref_image, height=height, width=width
|
|
)
|
|
ref_image_tensor = ref_image_tensor.to(
|
|
dtype=self.vae.dtype, device=self.vae.device
|
|
)
|
|
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
|
|
ref_image_latents = ref_image_latents * 0.18215
|
|
|
|
|
|
face_mask_tensor = self.cond_image_processor.preprocess(
|
|
face_mask, height=height, width=width
|
|
)
|
|
face_mask_tensor = face_mask_tensor.unsqueeze(2)
|
|
face_mask_tensor = face_mask_tensor.to(
|
|
device=device, dtype=self.face_locator.dtype
|
|
)
|
|
mask_fea = self.face_locator(face_mask_tensor)
|
|
mask_fea = (
|
|
torch.cat(
|
|
[mask_fea] * 2) if do_classifier_free_guidance else mask_fea
|
|
)
|
|
|
|
|
|
num_warmup_steps = len(timesteps) - \
|
|
num_inference_steps * self.scheduler.order
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
|
|
if i == 0:
|
|
self.reference_unet(
|
|
ref_image_latents.repeat(
|
|
(2 if do_classifier_free_guidance else 1), 1, 1, 1
|
|
),
|
|
torch.zeros_like(t),
|
|
encoder_hidden_states=image_prompt_embeds,
|
|
return_dict=False,
|
|
)
|
|
|
|
|
|
reference_control_reader.update(reference_control_writer)
|
|
|
|
|
|
latent_model_input = (
|
|
torch.cat(
|
|
[latents] * 2) if do_classifier_free_guidance else latents
|
|
)
|
|
latent_model_input = self.scheduler.scale_model_input(
|
|
latent_model_input, t
|
|
)
|
|
|
|
noise_pred = self.denoising_unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=image_prompt_embeds,
|
|
mask_cond_fea=mask_fea,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (
|
|
noise_pred_text - noise_pred_uncond
|
|
)
|
|
|
|
|
|
latents = self.scheduler.step(
|
|
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
|
)[0]
|
|
|
|
|
|
if i == len(timesteps) - 1 or (
|
|
(i + 1) > num_warmup_steps and (i +
|
|
1) % self.scheduler.order == 0
|
|
):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
reference_control_reader.clear()
|
|
reference_control_writer.clear()
|
|
|
|
|
|
image = self.decode_latents(latents)
|
|
|
|
|
|
if output_type == "tensor":
|
|
image = torch.from_numpy(image)
|
|
|
|
if not return_dict:
|
|
return image
|
|
|
|
return StaticPipelineOutput(images=image)
|
|
|