|
|
|
|
|
|
|
|
|
"""
|
|
temporal_transformers.py
|
|
|
|
This module provides classes and functions for implementing Temporal Transformers
|
|
in PyTorch, designed for handling video data and temporal sequences within transformer-based models.
|
|
|
|
Functions:
|
|
zero_module(module)
|
|
Zero out the parameters of a module and return it.
|
|
|
|
Classes:
|
|
TemporalTransformer3DModelOutput(BaseOutput)
|
|
Dataclass for storing the output of TemporalTransformer3DModel.
|
|
|
|
VanillaTemporalModule(nn.Module)
|
|
A Vanilla Temporal Module class for handling temporal data.
|
|
|
|
TemporalTransformer3DModel(nn.Module)
|
|
A Temporal Transformer 3D Model class for transforming temporal data.
|
|
|
|
TemporalTransformerBlock(nn.Module)
|
|
A Temporal Transformer Block class for building the transformer architecture.
|
|
|
|
PositionalEncoding(nn.Module)
|
|
A Positional Encoding module for transformers to encode positional information.
|
|
|
|
Dependencies:
|
|
math
|
|
dataclasses.dataclass
|
|
typing (Callable, Optional)
|
|
torch
|
|
diffusers (FeedForward, Attention, AttnProcessor)
|
|
diffusers.utils (BaseOutput)
|
|
diffusers.utils.import_utils (is_xformers_available)
|
|
einops (rearrange, repeat)
|
|
torch.nn
|
|
xformers
|
|
xformers.ops
|
|
|
|
Example Usage:
|
|
>>> motion_module = get_motion_module(in_channels=512, motion_module_type="Vanilla", motion_module_kwargs={})
|
|
>>> output = motion_module(input_tensor, temb, encoder_hidden_states)
|
|
|
|
This module is designed to facilitate the creation, training, and inference of transformer models
|
|
that operate on temporal data, such as videos or time-series. It includes mechanisms for applying temporal attention,
|
|
managing positional encoding, and integrating with external libraries for efficient attention operations.
|
|
"""
|
|
|
|
|
|
|
|
import math
|
|
|
|
import torch
|
|
import xformers
|
|
import xformers.ops
|
|
from diffusers.models.attention import FeedForward
|
|
from diffusers.models.attention_processor import Attention, AttnProcessor
|
|
from diffusers.utils import BaseOutput
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
from einops import rearrange, repeat
|
|
from torch import nn
|
|
|
|
|
|
def zero_module(module):
|
|
"""
|
|
Zero out the parameters of a module and return it.
|
|
|
|
Args:
|
|
- module: A PyTorch module to zero out its parameters.
|
|
|
|
Returns:
|
|
A zeroed out PyTorch module.
|
|
"""
|
|
for p in module.parameters():
|
|
p.detach().zero_()
|
|
return module
|
|
|
|
|
|
class TemporalTransformer3DModelOutput(BaseOutput):
|
|
"""
|
|
Output class for the TemporalTransformer3DModel.
|
|
|
|
Attributes:
|
|
sample (torch.FloatTensor): The output sample tensor from the model.
|
|
"""
|
|
sample: torch.FloatTensor
|
|
|
|
def get_sample_shape(self):
|
|
"""
|
|
Returns the shape of the sample tensor.
|
|
|
|
Returns:
|
|
Tuple: The shape of the sample tensor.
|
|
"""
|
|
return self.sample.shape
|
|
|
|
|
|
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
|
|
"""
|
|
This function returns a motion module based on the given type and parameters.
|
|
|
|
Args:
|
|
- in_channels (int): The number of input channels for the motion module.
|
|
- motion_module_type (str): The type of motion module to create. Currently, only "Vanilla" is supported.
|
|
- motion_module_kwargs (dict): Additional keyword arguments to pass to the motion module constructor.
|
|
|
|
Returns:
|
|
VanillaTemporalModule: The created motion module.
|
|
|
|
Raises:
|
|
ValueError: If an unsupported motion_module_type is provided.
|
|
"""
|
|
if motion_module_type == "Vanilla":
|
|
return VanillaTemporalModule(
|
|
in_channels=in_channels,
|
|
**motion_module_kwargs,
|
|
)
|
|
|
|
raise ValueError
|
|
|
|
|
|
class VanillaTemporalModule(nn.Module):
|
|
"""
|
|
A Vanilla Temporal Module class.
|
|
|
|
Args:
|
|
- in_channels (int): The number of input channels for the motion module.
|
|
- num_attention_heads (int): Number of attention heads.
|
|
- num_transformer_block (int): Number of transformer blocks.
|
|
- attention_block_types (tuple): Types of attention blocks.
|
|
- cross_frame_attention_mode: Mode for cross-frame attention.
|
|
- temporal_position_encoding (bool): Flag for temporal position encoding.
|
|
- temporal_position_encoding_max_len (int): Maximum length for temporal position encoding.
|
|
- temporal_attention_dim_div (int): Divisor for temporal attention dimension.
|
|
- zero_initialize (bool): Flag for zero initialization.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
num_attention_heads=8,
|
|
num_transformer_block=2,
|
|
attention_block_types=("Temporal_Self", "Temporal_Self"),
|
|
cross_frame_attention_mode=None,
|
|
temporal_position_encoding=False,
|
|
temporal_position_encoding_max_len=24,
|
|
temporal_attention_dim_div=1,
|
|
zero_initialize=True,
|
|
):
|
|
super().__init__()
|
|
|
|
self.temporal_transformer = TemporalTransformer3DModel(
|
|
in_channels=in_channels,
|
|
num_attention_heads=num_attention_heads,
|
|
attention_head_dim=in_channels
|
|
// num_attention_heads
|
|
// temporal_attention_dim_div,
|
|
num_layers=num_transformer_block,
|
|
attention_block_types=attention_block_types,
|
|
cross_frame_attention_mode=cross_frame_attention_mode,
|
|
temporal_position_encoding=temporal_position_encoding,
|
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
|
)
|
|
|
|
if zero_initialize:
|
|
self.temporal_transformer.proj_out = zero_module(
|
|
self.temporal_transformer.proj_out
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_tensor,
|
|
encoder_hidden_states,
|
|
attention_mask=None,
|
|
):
|
|
"""
|
|
Forward pass of the TemporalTransformer3DModel.
|
|
|
|
Args:
|
|
hidden_states (torch.Tensor): The hidden states of the model.
|
|
encoder_hidden_states (torch.Tensor, optional): The hidden states of the encoder.
|
|
attention_mask (torch.Tensor, optional): The attention mask.
|
|
|
|
Returns:
|
|
torch.Tensor: The output tensor after the forward pass.
|
|
"""
|
|
hidden_states = input_tensor
|
|
hidden_states = self.temporal_transformer(
|
|
hidden_states, encoder_hidden_states
|
|
)
|
|
|
|
output = hidden_states
|
|
return output
|
|
|
|
|
|
class TemporalTransformer3DModel(nn.Module):
|
|
"""
|
|
A Temporal Transformer 3D Model class.
|
|
|
|
Args:
|
|
- in_channels (int): The number of input channels.
|
|
- num_attention_heads (int): Number of attention heads.
|
|
- attention_head_dim (int): Dimension of attention heads.
|
|
- num_layers (int): Number of transformer layers.
|
|
- attention_block_types (tuple): Types of attention blocks.
|
|
- dropout (float): Dropout rate.
|
|
- norm_num_groups (int): Number of groups for normalization.
|
|
- cross_attention_dim (int): Dimension for cross-attention.
|
|
- activation_fn (str): Activation function.
|
|
- attention_bias (bool): Flag for attention bias.
|
|
- upcast_attention (bool): Flag for upcast attention.
|
|
- cross_frame_attention_mode: Mode for cross-frame attention.
|
|
- temporal_position_encoding (bool): Flag for temporal position encoding.
|
|
- temporal_position_encoding_max_len (int): Maximum length for temporal position encoding.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
num_attention_heads,
|
|
attention_head_dim,
|
|
num_layers,
|
|
attention_block_types=(
|
|
"Temporal_Self",
|
|
"Temporal_Self",
|
|
),
|
|
dropout=0.0,
|
|
norm_num_groups=32,
|
|
cross_attention_dim=768,
|
|
activation_fn="geglu",
|
|
attention_bias=False,
|
|
upcast_attention=False,
|
|
cross_frame_attention_mode=None,
|
|
temporal_position_encoding=False,
|
|
temporal_position_encoding_max_len=24,
|
|
):
|
|
super().__init__()
|
|
|
|
inner_dim = num_attention_heads * attention_head_dim
|
|
|
|
self.norm = torch.nn.GroupNorm(
|
|
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
|
)
|
|
self.proj_in = nn.Linear(in_channels, inner_dim)
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
TemporalTransformerBlock(
|
|
dim=inner_dim,
|
|
num_attention_heads=num_attention_heads,
|
|
attention_head_dim=attention_head_dim,
|
|
attention_block_types=attention_block_types,
|
|
dropout=dropout,
|
|
cross_attention_dim=cross_attention_dim,
|
|
activation_fn=activation_fn,
|
|
attention_bias=attention_bias,
|
|
upcast_attention=upcast_attention,
|
|
cross_frame_attention_mode=cross_frame_attention_mode,
|
|
temporal_position_encoding=temporal_position_encoding,
|
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
|
)
|
|
for d in range(num_layers)
|
|
]
|
|
)
|
|
self.proj_out = nn.Linear(inner_dim, in_channels)
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None):
|
|
"""
|
|
Forward pass for the TemporalTransformer3DModel.
|
|
|
|
Args:
|
|
hidden_states (torch.Tensor): The input hidden states with shape (batch_size, sequence_length, in_channels).
|
|
encoder_hidden_states (torch.Tensor, optional): The encoder hidden states with shape (batch_size, encoder_sequence_length, in_channels).
|
|
|
|
Returns:
|
|
torch.Tensor: The output hidden states with shape (batch_size, sequence_length, in_channels).
|
|
"""
|
|
assert (
|
|
hidden_states.dim() == 5
|
|
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
|
video_length = hidden_states.shape[2]
|
|
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
|
|
|
batch, _, height, weight = hidden_states.shape
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
inner_dim = hidden_states.shape[1]
|
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
|
batch, height * weight, inner_dim
|
|
)
|
|
hidden_states = self.proj_in(hidden_states)
|
|
|
|
|
|
for block in self.transformer_blocks:
|
|
hidden_states = block(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
video_length=video_length,
|
|
)
|
|
|
|
|
|
hidden_states = self.proj_out(hidden_states)
|
|
hidden_states = (
|
|
hidden_states.reshape(batch, height, weight, inner_dim)
|
|
.permute(0, 3, 1, 2)
|
|
.contiguous()
|
|
)
|
|
|
|
output = hidden_states + residual
|
|
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
|
|
|
return output
|
|
|
|
|
|
class TemporalTransformerBlock(nn.Module):
|
|
"""
|
|
A Temporal Transformer Block class.
|
|
|
|
Args:
|
|
- dim (int): Dimension of the block.
|
|
- num_attention_heads (int): Number of attention heads.
|
|
- attention_head_dim (int): Dimension of attention heads.
|
|
- attention_block_types (tuple): Types of attention blocks.
|
|
- dropout (float): Dropout rate.
|
|
- cross_attention_dim (int): Dimension for cross-attention.
|
|
- activation_fn (str): Activation function.
|
|
- attention_bias (bool): Flag for attention bias.
|
|
- upcast_attention (bool): Flag for upcast attention.
|
|
- cross_frame_attention_mode: Mode for cross-frame attention.
|
|
- temporal_position_encoding (bool): Flag for temporal position encoding.
|
|
- temporal_position_encoding_max_len (int): Maximum length for temporal position encoding.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_attention_heads,
|
|
attention_head_dim,
|
|
attention_block_types=(
|
|
"Temporal_Self",
|
|
"Temporal_Self",
|
|
),
|
|
dropout=0.0,
|
|
cross_attention_dim=768,
|
|
activation_fn="geglu",
|
|
attention_bias=False,
|
|
upcast_attention=False,
|
|
cross_frame_attention_mode=None,
|
|
temporal_position_encoding=False,
|
|
temporal_position_encoding_max_len=24,
|
|
):
|
|
super().__init__()
|
|
|
|
attention_blocks = []
|
|
norms = []
|
|
|
|
for block_name in attention_block_types:
|
|
attention_blocks.append(
|
|
VersatileAttention(
|
|
attention_mode=block_name.split("_", maxsplit=1)[0],
|
|
cross_attention_dim=cross_attention_dim
|
|
if block_name.endswith("_Cross")
|
|
else None,
|
|
query_dim=dim,
|
|
heads=num_attention_heads,
|
|
dim_head=attention_head_dim,
|
|
dropout=dropout,
|
|
bias=attention_bias,
|
|
upcast_attention=upcast_attention,
|
|
cross_frame_attention_mode=cross_frame_attention_mode,
|
|
temporal_position_encoding=temporal_position_encoding,
|
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
|
)
|
|
)
|
|
norms.append(nn.LayerNorm(dim))
|
|
|
|
self.attention_blocks = nn.ModuleList(attention_blocks)
|
|
self.norms = nn.ModuleList(norms)
|
|
|
|
self.ff = FeedForward(dim, dropout=dropout,
|
|
activation_fn=activation_fn)
|
|
self.ff_norm = nn.LayerNorm(dim)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
encoder_hidden_states=None,
|
|
video_length=None,
|
|
):
|
|
"""
|
|
Forward pass for the TemporalTransformerBlock.
|
|
|
|
Args:
|
|
hidden_states (torch.Tensor): The input hidden states with shape
|
|
(batch_size, video_length, in_channels).
|
|
encoder_hidden_states (torch.Tensor, optional): The encoder hidden states
|
|
with shape (batch_size, encoder_length, in_channels).
|
|
video_length (int, optional): The length of the video.
|
|
|
|
Returns:
|
|
torch.Tensor: The output hidden states with shape
|
|
(batch_size, video_length, in_channels).
|
|
"""
|
|
for attention_block, norm in zip(self.attention_blocks, self.norms):
|
|
norm_hidden_states = norm(hidden_states)
|
|
hidden_states = (
|
|
attention_block(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states
|
|
if attention_block.is_cross_attention
|
|
else None,
|
|
video_length=video_length,
|
|
)
|
|
+ hidden_states
|
|
)
|
|
|
|
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
|
|
|
|
output = hidden_states
|
|
return output
|
|
|
|
|
|
class PositionalEncoding(nn.Module):
|
|
"""
|
|
Positional Encoding module for transformers.
|
|
|
|
Args:
|
|
- d_model (int): Model dimension.
|
|
- dropout (float): Dropout rate.
|
|
- max_len (int): Maximum length for positional encoding.
|
|
"""
|
|
def __init__(self, d_model, dropout=0.0, max_len=24):
|
|
super().__init__()
|
|
self.dropout = nn.Dropout(p=dropout)
|
|
position = torch.arange(max_len).unsqueeze(1)
|
|
div_term = torch.exp(
|
|
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
|
|
)
|
|
pe = torch.zeros(1, max_len, d_model)
|
|
pe[0, :, 0::2] = torch.sin(position * div_term)
|
|
pe[0, :, 1::2] = torch.cos(position * div_term)
|
|
self.register_buffer("pe", pe)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass of the PositionalEncoding module.
|
|
|
|
This method takes an input tensor `x` and adds the positional encoding to it. The positional encoding is
|
|
generated based on the input tensor's shape and is added to the input tensor element-wise.
|
|
|
|
Args:
|
|
x (torch.Tensor): The input tensor to be positionally encoded.
|
|
|
|
Returns:
|
|
torch.Tensor: The positionally encoded tensor.
|
|
"""
|
|
x = x + self.pe[:, : x.size(1)]
|
|
return self.dropout(x)
|
|
|
|
|
|
class VersatileAttention(Attention):
|
|
"""
|
|
Versatile Attention class.
|
|
|
|
Args:
|
|
- attention_mode: Attention mode.
|
|
- temporal_position_encoding (bool): Flag for temporal position encoding.
|
|
- temporal_position_encoding_max_len (int): Maximum length for temporal position encoding.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
*args,
|
|
attention_mode=None,
|
|
cross_frame_attention_mode=None,
|
|
temporal_position_encoding=False,
|
|
temporal_position_encoding_max_len=24,
|
|
**kwargs,
|
|
):
|
|
super().__init__(*args, **kwargs)
|
|
assert attention_mode == "Temporal"
|
|
|
|
self.attention_mode = attention_mode
|
|
self.is_cross_attention = kwargs.get("cross_attention_dim") is not None
|
|
|
|
self.pos_encoder = (
|
|
PositionalEncoding(
|
|
kwargs["query_dim"],
|
|
dropout=0.0,
|
|
max_len=temporal_position_encoding_max_len,
|
|
)
|
|
if (temporal_position_encoding and attention_mode == "Temporal")
|
|
else None
|
|
)
|
|
|
|
def extra_repr(self):
|
|
"""
|
|
Returns a string representation of the module with information about the attention mode and whether it is cross-attention.
|
|
|
|
Returns:
|
|
str: A string representation of the module.
|
|
"""
|
|
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
|
|
|
|
def set_use_memory_efficient_attention_xformers(
|
|
self,
|
|
use_memory_efficient_attention_xformers: bool,
|
|
attention_op = None,
|
|
):
|
|
"""
|
|
Sets the use of memory-efficient attention xformers for the VersatileAttention class.
|
|
|
|
Args:
|
|
use_memory_efficient_attention_xformers (bool): A boolean flag indicating whether to use memory-efficient attention xformers or not.
|
|
|
|
Returns:
|
|
None
|
|
|
|
"""
|
|
if use_memory_efficient_attention_xformers:
|
|
if not is_xformers_available():
|
|
raise ModuleNotFoundError(
|
|
(
|
|
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
|
" xformers"
|
|
),
|
|
name="xformers",
|
|
)
|
|
|
|
if not torch.cuda.is_available():
|
|
raise ValueError(
|
|
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
|
|
" only available for GPU "
|
|
)
|
|
|
|
try:
|
|
|
|
_ = xformers.ops.memory_efficient_attention(
|
|
torch.randn((1, 2, 40), device="cuda"),
|
|
torch.randn((1, 2, 40), device="cuda"),
|
|
torch.randn((1, 2, 40), device="cuda"),
|
|
)
|
|
except Exception as e:
|
|
raise e
|
|
processor = AttnProcessor()
|
|
else:
|
|
processor = AttnProcessor()
|
|
|
|
self.set_processor(processor)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
encoder_hidden_states=None,
|
|
attention_mask=None,
|
|
video_length=None,
|
|
**cross_attention_kwargs,
|
|
):
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.Tensor`):
|
|
The hidden states to be passed through the model.
|
|
encoder_hidden_states (`torch.Tensor`, optional):
|
|
The encoder hidden states to be passed through the model.
|
|
attention_mask (`torch.Tensor`, optional):
|
|
The attention mask to be used in the model.
|
|
video_length (`int`, optional):
|
|
The length of the video.
|
|
cross_attention_kwargs (`dict`, optional):
|
|
Additional keyword arguments to be used for cross-attention.
|
|
|
|
Returns:
|
|
`torch.Tensor`:
|
|
The output tensor after passing through the model.
|
|
|
|
"""
|
|
if self.attention_mode == "Temporal":
|
|
d = hidden_states.shape[1]
|
|
hidden_states = rearrange(
|
|
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
|
)
|
|
|
|
if self.pos_encoder is not None:
|
|
hidden_states = self.pos_encoder(hidden_states)
|
|
|
|
encoder_hidden_states = (
|
|
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
|
|
if encoder_hidden_states is not None
|
|
else encoder_hidden_states
|
|
)
|
|
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
hidden_states = self.processor(
|
|
self,
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
attention_mask=attention_mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
|
|
if self.attention_mode == "Temporal":
|
|
hidden_states = rearrange(
|
|
hidden_states, "(b d) f c -> (b f) d c", d=d)
|
|
|
|
return hidden_states
|
|
|