|
|
|
|
|
|
|
"""
|
|
This file defines the 2D blocks for the UNet model in a PyTorch implementation.
|
|
The UNet model is a popular architecture for image segmentation tasks,
|
|
which consists of an encoder, a decoder, and a skip connection mechanism.
|
|
The 2D blocks in this file include various types of layers, such as ResNet blocks,
|
|
Transformer blocks, and cross-attention blocks,
|
|
which are used to build the encoder and decoder parts of the UNet model.
|
|
The AutoencoderTinyBlock class is a simple autoencoder block for tiny models,
|
|
and the UNetMidBlock2D and CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D,
|
|
and UpBlock2D classes are used for the middle and decoder parts of the UNet model.
|
|
The classes and functions in this file provide a flexible and modular way
|
|
to construct the UNet model for different image segmentation tasks.
|
|
"""
|
|
|
|
from typing import Any, Dict, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from diffusers.models.activations import get_activation
|
|
from diffusers.models.attention_processor import Attention
|
|
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
|
|
from diffusers.models.transformers.dual_transformer_2d import \
|
|
DualTransformer2DModel
|
|
from diffusers.utils import is_torch_version, logging
|
|
from diffusers.utils.torch_utils import apply_freeu
|
|
from torch import nn
|
|
|
|
from .transformer_2d import Transformer2DModel
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
def get_down_block(
|
|
down_block_type: str,
|
|
num_layers: int,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
add_downsample: bool,
|
|
resnet_eps: float,
|
|
resnet_act_fn: str,
|
|
transformer_layers_per_block: int = 1,
|
|
num_attention_heads: Optional[int] = None,
|
|
resnet_groups: Optional[int] = None,
|
|
cross_attention_dim: Optional[int] = None,
|
|
downsample_padding: Optional[int] = None,
|
|
dual_cross_attention: bool = False,
|
|
use_linear_projection: bool = False,
|
|
only_cross_attention: bool = False,
|
|
upcast_attention: bool = False,
|
|
resnet_time_scale_shift: str = "default",
|
|
attention_type: str = "default",
|
|
attention_head_dim: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
):
|
|
""" This function creates and returns a UpBlock2D or CrossAttnUpBlock2D object based on the given up_block_type.
|
|
|
|
Args:
|
|
up_block_type (str): The type of up block to create. Must be either "UpBlock2D" or "CrossAttnUpBlock2D".
|
|
num_layers (int): The number of layers in the ResNet block.
|
|
in_channels (int): The number of input channels.
|
|
out_channels (int): The number of output channels.
|
|
prev_output_channel (int): The number of channels in the previous output.
|
|
temb_channels (int): The number of channels in the token embedding.
|
|
add_upsample (bool): Whether to add an upsample layer after the ResNet block. Defaults to True.
|
|
resnet_eps (float): The epsilon value for the ResNet block. Defaults to 1e-6.
|
|
resnet_act_fn (str): The activation function to use in the ResNet block. Defaults to "swish".
|
|
resnet_groups (int): The number of groups in the ResNet block. Defaults to 32.
|
|
resnet_pre_norm (bool): Whether to use pre-normalization in the ResNet block. Defaults to True.
|
|
output_scale_factor (float): The scale factor to apply to the output. Defaults to 1.0.
|
|
|
|
Returns:
|
|
nn.Module: The created UpBlock2D or CrossAttnUpBlock2D object.
|
|
"""
|
|
|
|
if attention_head_dim is None:
|
|
logger.warning("It is recommended to provide `attention_head_dim` when calling `get_down_block`.")
|
|
logger.warning(f"Defaulting `attention_head_dim` to {num_attention_heads}.")
|
|
attention_head_dim = num_attention_heads
|
|
|
|
down_block_type = (
|
|
down_block_type[7:]
|
|
if down_block_type.startswith("UNetRes")
|
|
else down_block_type
|
|
)
|
|
if down_block_type == "DownBlock2D":
|
|
return DownBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
dropout=dropout,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
downsample_padding=downsample_padding,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
)
|
|
|
|
if down_block_type == "CrossAttnDownBlock2D":
|
|
if cross_attention_dim is None:
|
|
raise ValueError(
|
|
"cross_attention_dim must be specified for CrossAttnDownBlock2D"
|
|
)
|
|
return CrossAttnDownBlock2D(
|
|
num_layers=num_layers,
|
|
transformer_layers_per_block=transformer_layers_per_block,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
dropout=dropout,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
downsample_padding=downsample_padding,
|
|
cross_attention_dim=cross_attention_dim,
|
|
num_attention_heads=num_attention_heads,
|
|
dual_cross_attention=dual_cross_attention,
|
|
use_linear_projection=use_linear_projection,
|
|
only_cross_attention=only_cross_attention,
|
|
upcast_attention=upcast_attention,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
attention_type=attention_type,
|
|
)
|
|
raise ValueError(f"{down_block_type} does not exist.")
|
|
|
|
|
|
def get_up_block(
|
|
up_block_type: str,
|
|
num_layers: int,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
prev_output_channel: int,
|
|
temb_channels: int,
|
|
add_upsample: bool,
|
|
resnet_eps: float,
|
|
resnet_act_fn: str,
|
|
resolution_idx: Optional[int] = None,
|
|
transformer_layers_per_block: int = 1,
|
|
num_attention_heads: Optional[int] = None,
|
|
resnet_groups: Optional[int] = None,
|
|
cross_attention_dim: Optional[int] = None,
|
|
dual_cross_attention: bool = False,
|
|
use_linear_projection: bool = False,
|
|
only_cross_attention: bool = False,
|
|
upcast_attention: bool = False,
|
|
resnet_time_scale_shift: str = "default",
|
|
attention_type: str = "default",
|
|
attention_head_dim: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
) -> nn.Module:
|
|
""" This function ...
|
|
Args:
|
|
Returns:
|
|
"""
|
|
|
|
if attention_head_dim is None:
|
|
logger.warning("It is recommended to provide `attention_head_dim` when calling `get_up_block`.")
|
|
logger.warning(f"Defaulting `attention_head_dim` to {num_attention_heads}.")
|
|
attention_head_dim = num_attention_heads
|
|
|
|
up_block_type = (
|
|
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
|
)
|
|
if up_block_type == "UpBlock2D":
|
|
return UpBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
prev_output_channel=prev_output_channel,
|
|
temb_channels=temb_channels,
|
|
resolution_idx=resolution_idx,
|
|
dropout=dropout,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
)
|
|
if up_block_type == "CrossAttnUpBlock2D":
|
|
if cross_attention_dim is None:
|
|
raise ValueError(
|
|
"cross_attention_dim must be specified for CrossAttnUpBlock2D"
|
|
)
|
|
return CrossAttnUpBlock2D(
|
|
num_layers=num_layers,
|
|
transformer_layers_per_block=transformer_layers_per_block,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
prev_output_channel=prev_output_channel,
|
|
temb_channels=temb_channels,
|
|
resolution_idx=resolution_idx,
|
|
dropout=dropout,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
cross_attention_dim=cross_attention_dim,
|
|
num_attention_heads=num_attention_heads,
|
|
dual_cross_attention=dual_cross_attention,
|
|
use_linear_projection=use_linear_projection,
|
|
only_cross_attention=only_cross_attention,
|
|
upcast_attention=upcast_attention,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
attention_type=attention_type,
|
|
)
|
|
|
|
raise ValueError(f"{up_block_type} does not exist.")
|
|
|
|
|
|
class AutoencoderTinyBlock(nn.Module):
|
|
"""
|
|
Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
|
|
blocks.
|
|
|
|
Args:
|
|
in_channels (`int`): The number of input channels.
|
|
out_channels (`int`): The number of output channels.
|
|
act_fn (`str`):
|
|
` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
|
|
|
|
Returns:
|
|
`torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
|
|
`out_channels`.
|
|
"""
|
|
|
|
def __init__(self, in_channels: int, out_channels: int, act_fn: str):
|
|
super().__init__()
|
|
act_fn = get_activation(act_fn)
|
|
self.conv = nn.Sequential(
|
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
|
act_fn,
|
|
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
|
act_fn,
|
|
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
|
)
|
|
self.skip = (
|
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
|
if in_channels != out_channels
|
|
else nn.Identity()
|
|
)
|
|
self.fuse = nn.ReLU()
|
|
|
|
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
|
"""
|
|
Forward pass of the AutoencoderTinyBlock class.
|
|
|
|
Parameters:
|
|
x (torch.FloatTensor): The input tensor to the AutoencoderTinyBlock.
|
|
|
|
Returns:
|
|
torch.FloatTensor: The output tensor after passing through the AutoencoderTinyBlock.
|
|
"""
|
|
return self.fuse(self.conv(x) + self.skip(x))
|
|
|
|
|
|
class UNetMidBlock2D(nn.Module):
|
|
"""
|
|
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.
|
|
|
|
Args:
|
|
in_channels (`int`): The number of input channels.
|
|
temb_channels (`int`): The number of temporal embedding channels.
|
|
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
|
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
|
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
|
resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
|
|
The type of normalization to apply to the time embeddings. This can help to improve the performance of the
|
|
model on tasks with long-range temporal dependencies.
|
|
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
|
|
resnet_groups (`int`, *optional*, defaults to 32):
|
|
The number of groups to use in the group normalization layers of the resnet blocks.
|
|
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
|
|
resnet_pre_norm (`bool`, *optional*, defaults to `True`):
|
|
Whether to use pre-normalization for the resnet blocks.
|
|
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
|
|
attention_head_dim (`int`, *optional*, defaults to 1):
|
|
Dimension of a single attention head. The number of attention heads is determined based on this value and
|
|
the number of input channels.
|
|
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
|
|
|
|
Returns:
|
|
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
|
in_channels, height, width)`.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
attn_groups: Optional[int] = None,
|
|
resnet_pre_norm: bool = True,
|
|
add_attention: bool = True,
|
|
attention_head_dim: int = 1,
|
|
output_scale_factor: float = 1.0,
|
|
):
|
|
super().__init__()
|
|
resnet_groups = (
|
|
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
|
)
|
|
self.add_attention = add_attention
|
|
|
|
if attn_groups is None:
|
|
attn_groups = (
|
|
resnet_groups if resnet_time_scale_shift == "default" else None
|
|
)
|
|
|
|
|
|
resnets = [
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
]
|
|
attentions = []
|
|
|
|
if attention_head_dim is None:
|
|
logger.warning(
|
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
|
|
)
|
|
attention_head_dim = in_channels
|
|
|
|
for _ in range(num_layers):
|
|
if self.add_attention:
|
|
attentions.append(
|
|
Attention(
|
|
in_channels,
|
|
heads=in_channels // attention_head_dim,
|
|
dim_head=attention_head_dim,
|
|
rescale_output_factor=output_scale_factor,
|
|
eps=resnet_eps,
|
|
norm_num_groups=attn_groups,
|
|
spatial_norm_dim=(
|
|
temb_channels
|
|
if resnet_time_scale_shift == "spatial"
|
|
else None
|
|
),
|
|
residual_connection=True,
|
|
bias=True,
|
|
upcast_softmax=True,
|
|
_from_deprecated_attn_block=True,
|
|
)
|
|
)
|
|
else:
|
|
attentions.append(None)
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
def forward(
|
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None
|
|
) -> torch.FloatTensor:
|
|
"""
|
|
Forward pass of the UNetMidBlock2D class.
|
|
|
|
Args:
|
|
hidden_states (torch.FloatTensor): The input tensor to the UNetMidBlock2D.
|
|
temb (Optional[torch.FloatTensor], optional): The token embedding tensor. Defaults to None.
|
|
|
|
Returns:
|
|
torch.FloatTensor: The output tensor after passing through the UNetMidBlock2D.
|
|
"""
|
|
|
|
hidden_states = self.resnets[0](hidden_states, temb)
|
|
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
|
if attn is not None:
|
|
hidden_states = attn(hidden_states, temb=temb)
|
|
hidden_states = resnet(hidden_states, temb)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class UNetMidBlock2DCrossAttn(nn.Module):
|
|
"""
|
|
UNetMidBlock2DCrossAttn is a class that represents a mid-block 2D UNet with cross-attention.
|
|
|
|
This block is responsible for processing the input tensor with a series of residual blocks,
|
|
and applying cross-attention mechanism to attend to the global information in the encoder.
|
|
|
|
Args:
|
|
in_channels (int): The number of input channels.
|
|
temb_channels (int): The number of channels for the token embedding.
|
|
dropout (float, optional): The dropout rate. Defaults to 0.0.
|
|
num_layers (int, optional): The number of layers in the residual blocks. Defaults to 1.
|
|
resnet_eps (float, optional): The epsilon value for the residual blocks. Defaults to 1e-6.
|
|
resnet_time_scale_shift (str, optional): The time scale shift type for the residual blocks. Defaults to "default".
|
|
resnet_act_fn (str, optional): The activation function for the residual blocks. Defaults to "swish".
|
|
resnet_groups (int, optional): The number of groups for the residual blocks. Defaults to 32.
|
|
resnet_pre_norm (bool, optional): Whether to apply pre-normalization for the residual blocks. Defaults to True.
|
|
num_attention_heads (int, optional): The number of attention heads for cross-attention. Defaults to 1.
|
|
cross_attention_dim (int, optional): The dimension of the cross-attention. Defaults to 1280.
|
|
output_scale_factor (float, optional): The scale factor for the output tensor. Defaults to 1.0.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
num_attention_heads: int = 1,
|
|
output_scale_factor: float = 1.0,
|
|
cross_attention_dim: int = 1280,
|
|
dual_cross_attention: bool = False,
|
|
use_linear_projection: bool = False,
|
|
upcast_attention: bool = False,
|
|
attention_type: str = "default",
|
|
):
|
|
super().__init__()
|
|
|
|
self.has_cross_attention = True
|
|
self.num_attention_heads = num_attention_heads
|
|
resnet_groups = (
|
|
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
|
)
|
|
|
|
|
|
if isinstance(transformer_layers_per_block, int):
|
|
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
|
|
|
|
|
resnets = [
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
]
|
|
attentions = []
|
|
|
|
for i in range(num_layers):
|
|
if not dual_cross_attention:
|
|
attentions.append(
|
|
Transformer2DModel(
|
|
num_attention_heads,
|
|
in_channels // num_attention_heads,
|
|
in_channels=in_channels,
|
|
num_layers=transformer_layers_per_block[i],
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
use_linear_projection=use_linear_projection,
|
|
upcast_attention=upcast_attention,
|
|
attention_type=attention_type,
|
|
)
|
|
)
|
|
else:
|
|
attentions.append(
|
|
DualTransformer2DModel(
|
|
num_attention_heads,
|
|
in_channels // num_attention_heads,
|
|
in_channels=in_channels,
|
|
num_layers=1,
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
)
|
|
)
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
) -> torch.FloatTensor:
|
|
"""
|
|
Forward pass for the UNetMidBlock2DCrossAttn class.
|
|
|
|
Args:
|
|
hidden_states (torch.FloatTensor): The input hidden states tensor.
|
|
temb (Optional[torch.FloatTensor], optional): The optional tensor for time embeddings.
|
|
encoder_hidden_states (Optional[torch.FloatTensor], optional): The optional encoder hidden states tensor.
|
|
attention_mask (Optional[torch.FloatTensor], optional): The optional attention mask tensor.
|
|
cross_attention_kwargs (Optional[Dict[str, Any]], optional): The optional cross-attention kwargs tensor.
|
|
encoder_attention_mask (Optional[torch.FloatTensor], optional): The optional encoder attention mask tensor.
|
|
|
|
Returns:
|
|
torch.FloatTensor: The output tensor after passing through the UNetMidBlock2DCrossAttn layers.
|
|
"""
|
|
lora_scale = (
|
|
cross_attention_kwargs.get("scale", 1.0)
|
|
if cross_attention_kwargs is not None
|
|
else 1.0
|
|
)
|
|
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
|
|
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = (
|
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
)
|
|
hidden_states, _ref_feature = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet),
|
|
hidden_states,
|
|
temb,
|
|
**ckpt_kwargs,
|
|
)
|
|
else:
|
|
hidden_states, _ref_feature = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class CrossAttnDownBlock2D(nn.Module):
|
|
"""
|
|
CrossAttnDownBlock2D is a class that represents a 2D cross-attention downsampling block.
|
|
|
|
This block is used in the UNet model and consists of a series of ResNet blocks and Transformer layers.
|
|
It takes input hidden states, a tensor embedding, and optional encoder hidden states, attention mask,
|
|
and cross-attention kwargs. The block performs a series of operations including downsampling, cross-attention,
|
|
and residual connections.
|
|
|
|
Attributes:
|
|
in_channels (int): The number of input channels.
|
|
out_channels (int): The number of output channels.
|
|
temb_channels (int): The number of tensor embedding channels.
|
|
dropout (float): The dropout rate.
|
|
num_layers (int): The number of ResNet layers.
|
|
transformer_layers_per_block (Union[int, Tuple[int]]): The number of Transformer layers per block.
|
|
resnet_eps (float): The ResNet epsilon value.
|
|
resnet_time_scale_shift (str): The ResNet time scale shift type.
|
|
resnet_act_fn (str): The ResNet activation function.
|
|
resnet_groups (int): The ResNet group size.
|
|
resnet_pre_norm (bool): Whether to use ResNet pre-normalization.
|
|
num_attention_heads (int): The number of attention heads.
|
|
cross_attention_dim (int): The cross-attention dimension.
|
|
output_scale_factor (float): The output scale factor.
|
|
downsample_padding (int): The downsampling padding.
|
|
add_downsample (bool): Whether to add downsampling.
|
|
dual_cross_attention (bool): Whether to use dual cross-attention.
|
|
use_linear_projection (bool): Whether to use linear projection.
|
|
only_cross_attention (bool): Whether to use only cross-attention.
|
|
upcast_attention (bool): Whether to upcast attention.
|
|
attention_type (str): The attention type.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
num_attention_heads: int = 1,
|
|
cross_attention_dim: int = 1280,
|
|
output_scale_factor: float = 1.0,
|
|
downsample_padding: int = 1,
|
|
add_downsample: bool = True,
|
|
dual_cross_attention: bool = False,
|
|
use_linear_projection: bool = False,
|
|
only_cross_attention: bool = False,
|
|
upcast_attention: bool = False,
|
|
attention_type: str = "default",
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
attentions = []
|
|
|
|
self.has_cross_attention = True
|
|
self.num_attention_heads = num_attention_heads
|
|
if isinstance(transformer_layers_per_block, int):
|
|
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
if not dual_cross_attention:
|
|
attentions.append(
|
|
Transformer2DModel(
|
|
num_attention_heads,
|
|
out_channels // num_attention_heads,
|
|
in_channels=out_channels,
|
|
num_layers=transformer_layers_per_block[i],
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
use_linear_projection=use_linear_projection,
|
|
only_cross_attention=only_cross_attention,
|
|
upcast_attention=upcast_attention,
|
|
attention_type=attention_type,
|
|
)
|
|
)
|
|
else:
|
|
attentions.append(
|
|
DualTransformer2DModel(
|
|
num_attention_heads,
|
|
out_channels // num_attention_heads,
|
|
in_channels=out_channels,
|
|
num_layers=1,
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
)
|
|
)
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_downsample:
|
|
self.downsamplers = nn.ModuleList(
|
|
[
|
|
Downsample2D(
|
|
out_channels,
|
|
use_conv=True,
|
|
out_channels=out_channels,
|
|
padding=downsample_padding,
|
|
name="op",
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.downsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
additional_residuals: Optional[torch.FloatTensor] = None,
|
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
|
"""
|
|
Forward pass for the CrossAttnDownBlock2D class.
|
|
|
|
Args:
|
|
hidden_states (torch.FloatTensor): The input hidden states.
|
|
temb (Optional[torch.FloatTensor], optional): The token embeddings. Defaults to None.
|
|
encoder_hidden_states (Optional[torch.FloatTensor], optional): The encoder hidden states. Defaults to None.
|
|
attention_mask (Optional[torch.FloatTensor], optional): The attention mask. Defaults to None.
|
|
cross_attention_kwargs (Optional[Dict[str, Any]], optional): The cross-attention kwargs. Defaults to None.
|
|
encoder_attention_mask (Optional[torch.FloatTensor], optional): The encoder attention mask. Defaults to None.
|
|
additional_residuals (Optional[torch.FloatTensor], optional): The additional residuals. Defaults to None.
|
|
|
|
Returns:
|
|
Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: The output hidden states and residuals.
|
|
"""
|
|
output_states = ()
|
|
|
|
lora_scale = (
|
|
cross_attention_kwargs.get("scale", 1.0)
|
|
if cross_attention_kwargs is not None
|
|
else 1.0
|
|
)
|
|
|
|
blocks = list(zip(self.resnets, self.attentions))
|
|
|
|
for i, (resnet, attn) in enumerate(blocks):
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = (
|
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
)
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet),
|
|
hidden_states,
|
|
temb,
|
|
**ckpt_kwargs,
|
|
)
|
|
hidden_states, _ref_feature = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
hidden_states, _ref_feature = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)
|
|
|
|
|
|
if i == len(blocks) - 1 and additional_residuals is not None:
|
|
hidden_states = hidden_states + additional_residuals
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states, scale=lora_scale)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
return hidden_states, output_states
|
|
|
|
|
|
class DownBlock2D(nn.Module):
|
|
"""
|
|
DownBlock2D is a class that represents a 2D downsampling block in a neural network.
|
|
|
|
It takes the following parameters:
|
|
- in_channels (int): The number of input channels in the block.
|
|
- out_channels (int): The number of output channels in the block.
|
|
- temb_channels (int): The number of channels in the token embedding.
|
|
- dropout (float): The dropout rate for the block.
|
|
- num_layers (int): The number of layers in the block.
|
|
- resnet_eps (float): The epsilon value for the ResNet layer.
|
|
- resnet_time_scale_shift (str): The type of activation function for the ResNet layer.
|
|
- resnet_act_fn (str): The activation function for the ResNet layer.
|
|
- resnet_groups (int): The number of groups in the ResNet layer.
|
|
- resnet_pre_norm (bool): Whether to apply layer normalization before the ResNet layer.
|
|
- output_scale_factor (float): The scale factor for the output.
|
|
- add_downsample (bool): Whether to add a downsampling layer.
|
|
- downsample_padding (int): The padding value for the downsampling layer.
|
|
|
|
The DownBlock2D class inherits from the nn.Module class and defines the following methods:
|
|
- __init__: Initializes the DownBlock2D class with the given parameters.
|
|
- forward: Forward pass of the DownBlock2D class.
|
|
|
|
The forward method takes the following parameters:
|
|
- hidden_states (torch.FloatTensor): The input tensor to the block.
|
|
- temb (Optional[torch.FloatTensor]): The token embedding tensor.
|
|
- scale (float): The scale factor for the input tensor.
|
|
|
|
The forward method returns a tuple containing the output tensor and a tuple of hidden states.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
output_scale_factor: float = 1.0,
|
|
add_downsample: bool = True,
|
|
downsample_padding: int = 1,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_downsample:
|
|
self.downsamplers = nn.ModuleList(
|
|
[
|
|
Downsample2D(
|
|
out_channels,
|
|
use_conv=True,
|
|
out_channels=out_channels,
|
|
padding=downsample_padding,
|
|
name="op",
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.downsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
scale: float = 1.0,
|
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
|
"""
|
|
Forward pass of the DownBlock2D class.
|
|
|
|
Args:
|
|
hidden_states (torch.FloatTensor): The input tensor to the DownBlock2D layer.
|
|
temb (Optional[torch.FloatTensor], optional): The token embedding tensor. Defaults to None.
|
|
scale (float, optional): The scale factor for the input tensor. Defaults to 1.0.
|
|
|
|
Returns:
|
|
Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: The output tensor and any additional hidden states.
|
|
"""
|
|
output_states = ()
|
|
|
|
for resnet in self.resnets:
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
if is_torch_version(">=", "1.11.0"):
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet),
|
|
hidden_states,
|
|
temb,
|
|
use_reentrant=False,
|
|
)
|
|
else:
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states, scale=scale)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
return hidden_states, output_states
|
|
|
|
|
|
class CrossAttnUpBlock2D(nn.Module):
|
|
"""
|
|
CrossAttnUpBlock2D is a class that represents a cross-attention UpBlock in a 2D UNet architecture.
|
|
|
|
This block is responsible for upsampling the input tensor and performing cross-attention with the encoder's hidden states.
|
|
|
|
Args:
|
|
in_channels (int): The number of input channels in the tensor.
|
|
out_channels (int): The number of output channels in the tensor.
|
|
prev_output_channel (int): The number of channels in the previous output tensor.
|
|
temb_channels (int): The number of channels in the token embedding tensor.
|
|
resolution_idx (Optional[int]): The index of the resolution in the model.
|
|
dropout (float): The dropout rate for the layer.
|
|
num_layers (int): The number of layers in the ResNet block.
|
|
transformer_layers_per_block (Union[int, Tuple[int]]): The number of transformer layers per block.
|
|
resnet_eps (float): The epsilon value for the ResNet layer.
|
|
resnet_time_scale_shift (str): The type of time scale shift to be applied in the ResNet layer.
|
|
resnet_act_fn (str): The activation function to be used in the ResNet layer.
|
|
resnet_groups (int): The number of groups in the ResNet layer.
|
|
resnet_pre_norm (bool): Whether to use pre-normalization in the ResNet layer.
|
|
num_attention_heads (int): The number of attention heads in the cross-attention layer.
|
|
cross_attention_dim (int): The dimension of the cross-attention layer.
|
|
output_scale_factor (float): The scale factor for the output tensor.
|
|
add_upsample (bool): Whether to add upsampling to the block.
|
|
dual_cross_attention (bool): Whether to use dual cross-attention.
|
|
use_linear_projection (bool): Whether to use linear projection in the cross-attention layer.
|
|
only_cross_attention (bool): Whether to only use cross-attention and no self-attention.
|
|
upcast_attention (bool): Whether to upcast the attention weights.
|
|
attention_type (str): The type of attention to be used in the cross-attention layer.
|
|
|
|
Attributes:
|
|
up_block (nn.Module): The UpBlock module responsible for upsampling the input tensor.
|
|
cross_attn (nn.Module): The cross-attention module that performs attention between
|
|
the decoder's hidden states and the encoder's hidden states.
|
|
resnet_blocks (nn.ModuleList): A list of ResNet blocks that make up the ResNet portion of the block.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
prev_output_channel: int,
|
|
temb_channels: int,
|
|
resolution_idx: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
num_attention_heads: int = 1,
|
|
cross_attention_dim: int = 1280,
|
|
output_scale_factor: float = 1.0,
|
|
add_upsample: bool = True,
|
|
dual_cross_attention: bool = False,
|
|
use_linear_projection: bool = False,
|
|
only_cross_attention: bool = False,
|
|
upcast_attention: bool = False,
|
|
attention_type: str = "default",
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
attentions = []
|
|
|
|
self.has_cross_attention = True
|
|
self.num_attention_heads = num_attention_heads
|
|
|
|
if isinstance(transformer_layers_per_block, int):
|
|
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
|
|
|
for i in range(num_layers):
|
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=resnet_in_channels + res_skip_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
if not dual_cross_attention:
|
|
attentions.append(
|
|
Transformer2DModel(
|
|
num_attention_heads,
|
|
out_channels // num_attention_heads,
|
|
in_channels=out_channels,
|
|
num_layers=transformer_layers_per_block[i],
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
use_linear_projection=use_linear_projection,
|
|
only_cross_attention=only_cross_attention,
|
|
upcast_attention=upcast_attention,
|
|
attention_type=attention_type,
|
|
)
|
|
)
|
|
else:
|
|
attentions.append(
|
|
DualTransformer2DModel(
|
|
num_attention_heads,
|
|
out_channels // num_attention_heads,
|
|
in_channels=out_channels,
|
|
num_layers=1,
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
)
|
|
)
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_upsample:
|
|
self.upsamplers = nn.ModuleList(
|
|
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
|
|
)
|
|
else:
|
|
self.upsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
upsample_size: Optional[int] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
) -> torch.FloatTensor:
|
|
"""
|
|
Forward pass for the CrossAttnUpBlock2D class.
|
|
|
|
Args:
|
|
self (CrossAttnUpBlock2D): An instance of the CrossAttnUpBlock2D class.
|
|
hidden_states (torch.FloatTensor): The input hidden states tensor.
|
|
res_hidden_states_tuple (Tuple[torch.FloatTensor, ...]): A tuple of residual hidden states tensors.
|
|
temb (Optional[torch.FloatTensor], optional): The token embeddings tensor. Defaults to None.
|
|
encoder_hidden_states (Optional[torch.FloatTensor], optional): The encoder hidden states tensor. Defaults to None.
|
|
cross_attention_kwargs (Optional[Dict[str, Any]], optional): Additional keyword arguments for cross attention. Defaults to None.
|
|
upsample_size (Optional[int], optional): The upsample size. Defaults to None.
|
|
attention_mask (Optional[torch.FloatTensor], optional): The attention mask tensor. Defaults to None.
|
|
encoder_attention_mask (Optional[torch.FloatTensor], optional): The encoder attention mask tensor. Defaults to None.
|
|
|
|
Returns:
|
|
torch.FloatTensor: The output tensor after passing through the block.
|
|
"""
|
|
lora_scale = (
|
|
cross_attention_kwargs.get("scale", 1.0)
|
|
if cross_attention_kwargs is not None
|
|
else 1.0
|
|
)
|
|
is_freeu_enabled = (
|
|
getattr(self, "s1", None)
|
|
and getattr(self, "s2", None)
|
|
and getattr(self, "b1", None)
|
|
and getattr(self, "b2", None)
|
|
)
|
|
|
|
for resnet, attn in zip(self.resnets, self.attentions):
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
|
|
|
|
if is_freeu_enabled:
|
|
hidden_states, res_hidden_states = apply_freeu(
|
|
self.resolution_idx,
|
|
hidden_states,
|
|
res_hidden_states,
|
|
s1=self.s1,
|
|
s2=self.s2,
|
|
b1=self.b1,
|
|
b2=self.b2,
|
|
)
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = (
|
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
)
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet),
|
|
hidden_states,
|
|
temb,
|
|
**ckpt_kwargs,
|
|
)
|
|
hidden_states, _ref_feature = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
hidden_states, _ref_feature = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(
|
|
hidden_states, upsample_size, scale=lora_scale
|
|
)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class UpBlock2D(nn.Module):
|
|
"""
|
|
UpBlock2D is a class that represents a 2D upsampling block in a neural network.
|
|
|
|
This block is used for upsampling the input tensor by a factor of 2 in both dimensions.
|
|
It takes the previous output channel, input channels, and output channels as input
|
|
and applies a series of convolutional layers, batch normalization, and activation
|
|
functions to produce the upsampled tensor.
|
|
|
|
Args:
|
|
in_channels (int): The number of input channels in the tensor.
|
|
prev_output_channel (int): The number of channels in the previous output tensor.
|
|
out_channels (int): The number of output channels in the tensor.
|
|
temb_channels (int): The number of channels in the time embedding tensor.
|
|
resolution_idx (Optional[int], optional): The index of the resolution in the sequence of resolutions. Defaults to None.
|
|
dropout (float, optional): The dropout rate to be applied to the convolutional layers. Defaults to 0.0.
|
|
num_layers (int, optional): The number of convolutional layers in the block. Defaults to 1.
|
|
resnet_eps (float, optional): The epsilon value used in the batch normalization layer. Defaults to 1e-6.
|
|
resnet_time_scale_shift (str, optional): The type of activation function to be applied after the convolutional layers. Defaults to "default".
|
|
resnet_act_fn (str, optional): The activation function to be applied after the batch normalization layer. Defaults to "swish".
|
|
resnet_groups (int, optional): The number of groups in the group normalization layer. Defaults to 32.
|
|
resnet_pre_norm (bool, optional): A flag indicating whether to apply layer normalization before the activation function. Defaults to True.
|
|
output_scale_factor (float, optional): The scale factor to be applied to the output tensor. Defaults to 1.0.
|
|
add_upsample (bool, optional): A flag indicating whether to add an upsampling layer to the block. Defaults to True.
|
|
|
|
Attributes:
|
|
layers (nn.ModuleList): A list of nn.Module objects representing the convolutional layers in the block.
|
|
upsample (nn.Module): The upsampling layer in the block, if add_upsample is True.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
prev_output_channel: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
resolution_idx: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
output_scale_factor: float = 1.0,
|
|
add_upsample: bool = True,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
|
|
for i in range(num_layers):
|
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=resnet_in_channels + res_skip_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_upsample:
|
|
self.upsamplers = nn.ModuleList(
|
|
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
|
|
)
|
|
else:
|
|
self.upsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
upsample_size: Optional[int] = None,
|
|
scale: float = 1.0,
|
|
) -> torch.FloatTensor:
|
|
|
|
"""
|
|
Forward pass for the UpBlock2D class.
|
|
|
|
Args:
|
|
self (UpBlock2D): An instance of the UpBlock2D class.
|
|
hidden_states (torch.FloatTensor): The input tensor to the block.
|
|
res_hidden_states_tuple (Tuple[torch.FloatTensor, ...]): A tuple of residual hidden states.
|
|
temb (Optional[torch.FloatTensor], optional): The token embeddings. Defaults to None.
|
|
upsample_size (Optional[int], optional): The size to upsample the input tensor to. Defaults to None.
|
|
scale (float, optional): The scale factor to apply to the input tensor. Defaults to 1.0.
|
|
|
|
Returns:
|
|
torch.FloatTensor: The output tensor after passing through the block.
|
|
"""
|
|
is_freeu_enabled = (
|
|
getattr(self, "s1", None)
|
|
and getattr(self, "s2", None)
|
|
and getattr(self, "b1", None)
|
|
and getattr(self, "b2", None)
|
|
)
|
|
|
|
for resnet in self.resnets:
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
|
|
|
|
if is_freeu_enabled:
|
|
hidden_states, res_hidden_states = apply_freeu(
|
|
self.resolution_idx,
|
|
hidden_states,
|
|
res_hidden_states,
|
|
s1=self.s1,
|
|
s2=self.s2,
|
|
b1=self.b1,
|
|
b2=self.b2,
|
|
)
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
if is_torch_version(">=", "1.11.0"):
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet),
|
|
hidden_states,
|
|
temb,
|
|
use_reentrant=False,
|
|
)
|
|
else:
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
|
|
|
|
return hidden_states
|
|
|