Spaces:
Running
Running
Specimen5423
commited on
Commit
·
379b837
1
Parent(s):
37ef30d
Add the app
Browse files- app.py +63 -0
- functions.py +267 -0
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from functions import CAT_ARTIST, CAT_CHARACTER, CAT_COPYRIGHT, CAT_GENERAL, CAT_LORE, CAT_META, CAT_SPECIES, PromptBuilder, parse_tag, parse_tags, related_tags
|
3 |
+
|
4 |
+
def query_tag(tag: str, category: int):
|
5 |
+
if category == -1:
|
6 |
+
category = None
|
7 |
+
return related_tags(parse_tag(tag), category=category)
|
8 |
+
|
9 |
+
def generate_prompt(include: str, focus: str, exclude: str, avoid: str, skip: str, rating: str, general: int, artist: int, species: int, copyright: int, character: int, meta: int) -> str:
|
10 |
+
try:
|
11 |
+
builder = PromptBuilder(skip=list(parse_tags(skip)), min_posts=50, rating=rating)
|
12 |
+
for tag in parse_tags(include):
|
13 |
+
builder = builder.include(tag)
|
14 |
+
for tag in parse_tags(focus):
|
15 |
+
builder = builder.focus(tag)
|
16 |
+
for tag in parse_tags(exclude):
|
17 |
+
builder = builder.exclude(tag)
|
18 |
+
for tag in parse_tags(avoid):
|
19 |
+
builder = builder.avoid(tag)
|
20 |
+
if artist > 0:
|
21 |
+
builder = builder.pick(CAT_ARTIST, artist, 10)
|
22 |
+
if species > 0:
|
23 |
+
builder = builder.pick(CAT_SPECIES, species, 10)
|
24 |
+
if copyright > 0:
|
25 |
+
builder = builder.pick(CAT_COPYRIGHT, copyright, 10)
|
26 |
+
if character > 0:
|
27 |
+
builder = builder.pick(CAT_CHARACTER, character, 10)
|
28 |
+
if meta > 0:
|
29 |
+
builder = builder.pick(CAT_META, meta, 10)
|
30 |
+
if general > 0:
|
31 |
+
builder = builder.pick(CAT_GENERAL, general, 50)
|
32 |
+
return builder.get_one()
|
33 |
+
except Exception as e:
|
34 |
+
return str(e)
|
35 |
+
|
36 |
+
with gr.Blocks() as demo:
|
37 |
+
with gr.Tab("Tag Explorer"):
|
38 |
+
tag = gr.Textbox(label="Tag")
|
39 |
+
category = gr.Dropdown(label="Category", choices=[("All", -1), ("General", CAT_GENERAL), ("Artist", CAT_ARTIST), ("Copyright", CAT_COPYRIGHT), ("Character", CAT_CHARACTER), ("Species", CAT_SPECIES), ("Meta", CAT_META), ("Lore", CAT_LORE)], value=-1)
|
40 |
+
query = gr.Button("Query")
|
41 |
+
output = gr.Dataframe()
|
42 |
+
query.click(fn=query_tag, inputs=[tag, category], outputs=output)
|
43 |
+
with gr.Tab("Prompt Expander"):
|
44 |
+
include = gr.Textbox(label="Positive Prompt - Start with these tags and weight picks toward them")
|
45 |
+
focus = gr.Textbox(label="Focus - Used for picks but not necessarily added to the prompt")
|
46 |
+
exclude = gr.Textbox(label="Negative Prompt - Put these in the negative prompt and weight picks against them")
|
47 |
+
avoid = gr.Textbox(label="Other Negatives - Weighted against picks but not put in the negatives")
|
48 |
+
skip = gr.Textbox(label="Skip - Never pick these tags")
|
49 |
+
rating = gr.Dropdown(label="Rating Limit (not 100% reliable)", choices=[("Safe", "s"), ("Questionable", "q"), ("Explicit", "e")], value="s")
|
50 |
+
with gr.Accordion(label="Tag Counts"):
|
51 |
+
with gr.Row():
|
52 |
+
general = gr.Number(5, label="General", precision=0, minimum=0, maximum=20)
|
53 |
+
artist = gr.Number(0, label="Artist", precision=0, minimum=0, maximum=5)
|
54 |
+
species = gr.Number(0, label="Species", precision=0, minimum=0, maximum=5)
|
55 |
+
copyright = gr.Number(0, label="Copyright", precision=0, minimum=0, maximum=5)
|
56 |
+
character = gr.Number(0, label="Character", precision=0, minimum=0, maximum=5)
|
57 |
+
meta = gr.Number(0, label="Meta", precision=0, minimum=0, maximum=5)
|
58 |
+
|
59 |
+
generate = gr.Button("Generate")
|
60 |
+
output = gr.Textbox(label="Prompt")
|
61 |
+
generate.click(fn=generate_prompt, inputs=[include, focus, exclude, avoid, skip, rating, general, artist, species, copyright, character, meta], outputs=output)
|
62 |
+
|
63 |
+
demo.launch()
|
functions.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas
|
2 |
+
import numpy
|
3 |
+
import pandas.io.formats.style
|
4 |
+
import random
|
5 |
+
import functools
|
6 |
+
from typing import Callable, Literal
|
7 |
+
|
8 |
+
DATA_FOLDER = "."
|
9 |
+
|
10 |
+
CAT_GENERAL = 0
|
11 |
+
CAT_ARTIST = 1
|
12 |
+
CAT_UNUSED = 2
|
13 |
+
CAT_COPYRIGHT = 3
|
14 |
+
CAT_CHARACTER = 4
|
15 |
+
CAT_SPECIES = 5
|
16 |
+
CAT_INVALID = 6
|
17 |
+
CAT_META = 7
|
18 |
+
CAT_LORE = 8
|
19 |
+
|
20 |
+
CATEGORY_COLORS = {
|
21 |
+
CAT_GENERAL: "#b4c7d9",
|
22 |
+
CAT_ARTIST: "#f2ac08",
|
23 |
+
CAT_UNUSED: "#ff3d3d",
|
24 |
+
CAT_COPYRIGHT: "#d0d",
|
25 |
+
CAT_CHARACTER: "#0a0",
|
26 |
+
CAT_SPECIES: "#ed5d1f",
|
27 |
+
CAT_INVALID: "#ff3d3d",
|
28 |
+
CAT_META: "#fff",
|
29 |
+
CAT_LORE: "#282"
|
30 |
+
}
|
31 |
+
|
32 |
+
def get_feather(filename: str) -> pandas.DataFrame:
|
33 |
+
return pandas.read_feather(f"{DATA_FOLDER}/{filename}.feather")
|
34 |
+
|
35 |
+
tags = get_feather("tags")
|
36 |
+
posts_by_tag = get_feather("posts_by_tag").set_index("tag_id")
|
37 |
+
tags_by_post = get_feather("tags_by_post").set_index("post_id")
|
38 |
+
tag_ratings = get_feather("tag_ratings")
|
39 |
+
implications = get_feather("implications")
|
40 |
+
tags_by_name = tags.copy(deep=True)
|
41 |
+
tags_by_name.set_index("name", inplace=True)
|
42 |
+
tags.set_index("tag_id", inplace=True)
|
43 |
+
|
44 |
+
@functools.cache
|
45 |
+
def get_related_tags(targets: tuple[str, ...], exclude: tuple[str, ...] = (), samples: int = 100_000) -> pandas.DataFrame:
|
46 |
+
these_tags = tags_by_name.loc[list(targets)]
|
47 |
+
posts_with_these_tags = posts_by_tag.loc[these_tags["tag_id"]].map(set).groupby(lambda x: True).agg(lambda x: set.intersection(*x))["post_id"][True]
|
48 |
+
if (len(exclude) > 0):
|
49 |
+
excluded_tags = tags_by_name.loc[list(exclude)]
|
50 |
+
posts_with_excluded_tags = posts_by_tag.loc[excluded_tags["tag_id"]].map(set).groupby(lambda x: True).agg(lambda x: set.union(*x))["post_id"][True]
|
51 |
+
posts_with_these_tags = posts_with_these_tags - posts_with_excluded_tags
|
52 |
+
total_post_count_together = len(posts_with_these_tags)
|
53 |
+
sample_posts = random.sample(list(posts_with_these_tags), samples) if total_post_count_together > samples else list(posts_with_these_tags)
|
54 |
+
post_count_together = len(sample_posts)
|
55 |
+
sample_ratio = post_count_together / total_post_count_together
|
56 |
+
tags_in_these_posts = tags_by_post.loc[sample_posts]
|
57 |
+
counts_in_these_posts = tags_in_these_posts["tag_id"].explode().value_counts().rename("overlap")
|
58 |
+
summaries = pandas.DataFrame(counts_in_these_posts).join(tags[tags["post_count"]>0], how="right").fillna(0)
|
59 |
+
summaries["overlap"] = numpy.minimum(summaries["overlap"] / sample_ratio, summaries["post_count"])
|
60 |
+
summaries = summaries[["category", "name", "overlap", "post_count"]]
|
61 |
+
# Old "interestingness" value, didn't give as good results as an actual statistical technique, go figure. Code kept for curiosity's sake.
|
62 |
+
#summaries["interestingness"] = summaries["overlap"].pow(2) / (total_post_count_together * summaries["post_count"])
|
63 |
+
# Phi coefficient stuff.
|
64 |
+
n = float(len(tags_by_post))
|
65 |
+
n11 = summaries["overlap"]
|
66 |
+
n1x = float(total_post_count_together)
|
67 |
+
nx1 = summaries["post_count"].astype("float64")
|
68 |
+
summaries["correlation"] = (n * n11 - n1x * nx1) / numpy.sqrt(n1x * nx1 * (n - n1x) * (n - nx1))
|
69 |
+
return summaries
|
70 |
+
|
71 |
+
def format_tags(styler: pandas.io.formats.style.Styler):
|
72 |
+
styler.apply(lambda row: numpy.where(row.index == "name", "color:"+CATEGORY_COLORS[row["category"]], ""), axis=1)
|
73 |
+
styler.hide(level=0)
|
74 |
+
styler.hide("category",axis=1)
|
75 |
+
if 'overlap' in styler.data:
|
76 |
+
styler.format("{:.0f}".format, subset=["overlap"])
|
77 |
+
if 'correlation' in styler.data:
|
78 |
+
styler.format("{:.2f}".format, subset=["correlation"])
|
79 |
+
styler.background_gradient(vmin=-1.0, vmax=1.0, cmap="RdYlGn", subset=["correlation"])
|
80 |
+
if 'score' in styler.data:
|
81 |
+
styler.format("{:.2f}".format, subset=["score"])
|
82 |
+
styler.background_gradient(vmin=-1.0, vmax=1.0, cmap="RdYlGn", subset=["score"])
|
83 |
+
return styler
|
84 |
+
|
85 |
+
def related_tags(*targets: str, exclude: tuple[str, ...] = (), category: int = None, samples: int = 100_000, min_overlap: int = 5, min_posts: int = 20, top: int = 30, bottom: int = 0) -> pandas.DataFrame:
|
86 |
+
result = get_related_tags(targets, exclude=exclude, samples=samples)
|
87 |
+
if category != None:
|
88 |
+
result = result[result["category"] == category]
|
89 |
+
result = result[~result["name"].isin(targets)]
|
90 |
+
result = result[result["overlap"] >= min_overlap]
|
91 |
+
result = result[result["post_count"] >= min_posts]
|
92 |
+
top_part = result.sort_values("correlation", ascending=False)[:top]
|
93 |
+
bottom_part = result.sort_values("correlation", ascending=True)[:bottom].sort_values("correlation", ascending=False)
|
94 |
+
return pandas.concat([top_part, bottom_part]).style.pipe(format_tags)
|
95 |
+
|
96 |
+
def implications_for(*subjects: str, seen: set[str] = None):
|
97 |
+
if seen is None:
|
98 |
+
seen = set()
|
99 |
+
for subject in subjects:
|
100 |
+
found = tags.loc[list(implications[implications["antecedent_id"] == tags_by_name.loc[subject, "tag_id"]].loc[:,"consequent_id"]), "name"].values
|
101 |
+
for f in found:
|
102 |
+
if f in seen:
|
103 |
+
pass
|
104 |
+
else:
|
105 |
+
yield f
|
106 |
+
seen.add(f)
|
107 |
+
yield from implications_for(f, seen=seen)
|
108 |
+
|
109 |
+
def parse_tag(potential_tag: str):
|
110 |
+
potential_tag = potential_tag.strip().replace(" ", "_").replace("\\(", "(").replace("\\)", ")")
|
111 |
+
if potential_tag == "":
|
112 |
+
return None
|
113 |
+
elif potential_tag in tags_by_name.index:
|
114 |
+
return potential_tag
|
115 |
+
elif potential_tag.startswith("by_") and potential_tag[3:] in tags_by_name.index:
|
116 |
+
return potential_tag[3:]
|
117 |
+
else:
|
118 |
+
print(f"Couldn't find tag '{potential_tag}', skipping it.")
|
119 |
+
|
120 |
+
def parse_tags(*parts: str):
|
121 |
+
for part in parts:
|
122 |
+
for potential_tag in part.split(","):
|
123 |
+
tag = parse_tag(potential_tag)
|
124 |
+
if tag is not None:
|
125 |
+
yield tag
|
126 |
+
|
127 |
+
def add_suggestions(suggestions: pandas.DataFrame, new_tags: str | list[str], multiplier: int, samples : int, min_posts: int, rating: Literal['s', 'q', 'e']):
|
128 |
+
if isinstance(new_tags, str):
|
129 |
+
new_tags = [new_tags]
|
130 |
+
for new_tag in new_tags:
|
131 |
+
related = get_related_tags((new_tag,), samples=samples)
|
132 |
+
# Implementing the rating filter this way is horribly inefficient, fix it later
|
133 |
+
if rating == 's':
|
134 |
+
related = related.join(tag_ratings.set_index("tag_id"), on="tag_id")
|
135 |
+
related["post_count"] = related["s"]
|
136 |
+
related = related.drop("s", axis=1)
|
137 |
+
related = related.drop("q", axis=1)
|
138 |
+
related = related.drop("e", axis=1)
|
139 |
+
elif rating == 'q':
|
140 |
+
related = related.join(tag_ratings.set_index("tag_id"), on="tag_id")
|
141 |
+
related["post_count"] = related["s"] + related["q"]
|
142 |
+
related = related.drop("s", axis=1)
|
143 |
+
related = related.drop("q", axis=1)
|
144 |
+
related = related.drop("e", axis=1)
|
145 |
+
related = related[related["post_count"] >= min_posts]
|
146 |
+
if suggestions is None:
|
147 |
+
suggestions = related.rename(columns={"correlation": "score"})
|
148 |
+
else:
|
149 |
+
suggestions = suggestions.join(related, rsuffix="r")
|
150 |
+
# This is a totally made up way to combine correlations. It keeps them from going outside the +/- 1 range, which is nice. It also makes older
|
151 |
+
# tags less important every time newer ones are added. That could be considered a feature or not.
|
152 |
+
suggestions["score"] = numpy.real(numpy.power((numpy.sqrt(suggestions["score"] + 0j) + numpy.sqrt(multiplier * suggestions["correlation"] + 0j)) / 2, 2))
|
153 |
+
return suggestions[["category", "name", "post_count", "score"]]
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
def pick_tags(suggestions: pandas.DataFrame, category: int, count: int, from_top: int, excluding: list[str], weighted: bool = True):
|
158 |
+
options = suggestions[(True if category is None else suggestions["category"] == category) & (suggestions["score"] > 0) & ~suggestions["name"].isin(excluding)].sort_values("score", ascending=False)[:from_top]
|
159 |
+
if weighted:
|
160 |
+
values = list(options["name"].values)
|
161 |
+
weights = list(options["score"].values)
|
162 |
+
choices = []
|
163 |
+
for _ in range(count):
|
164 |
+
choice = random.choices(population=values, weights=weights, k=1)[0]
|
165 |
+
weights.pop(values.index(choice))
|
166 |
+
values.remove(choice)
|
167 |
+
choices.append(choice)
|
168 |
+
return choices
|
169 |
+
else:
|
170 |
+
return random.sample(list(options["name"].values), count)
|
171 |
+
|
172 |
+
def tag_to_prompt(tag: str) -> str:
|
173 |
+
if (tags_by_name.loc[tag]["category"] == CAT_ARTIST):
|
174 |
+
tag = "by " + tag
|
175 |
+
return tag.replace("_", " ").replace("(" , "\\(").replace(")" , "\\)")
|
176 |
+
|
177 |
+
# A lambda in a for loop doesn't capture variables the way I want it to, so this is a method now
|
178 |
+
def add_suggestions_later(suggestions: pandas.DataFrame, new_tags: str | list[str], multiplier: int, samples: int, min_posts: int, rating: Literal['s', 'q', 'e']):
|
179 |
+
return lambda: add_suggestions(suggestions, new_tags, multiplier, samples, min_posts, rating)
|
180 |
+
|
181 |
+
|
182 |
+
Prompt = tuple[list[str], list[str], Callable[[], pandas.DataFrame]]
|
183 |
+
|
184 |
+
class PromptBuilder:
|
185 |
+
prompts: list[Prompt]
|
186 |
+
samples: int
|
187 |
+
min_posts: int
|
188 |
+
rating: Literal['s', 'q', 'e']
|
189 |
+
skip_list: list[str]
|
190 |
+
|
191 |
+
def __init__(self, prompts = [([],[],lambda: None)], skip=[], samples = 100_000, min_posts = 20, rating: Literal['s', 'q', 'e'] = 'e'):
|
192 |
+
self.prompts = prompts
|
193 |
+
self.samples = samples
|
194 |
+
self.min_posts = min_posts
|
195 |
+
self.rating = rating
|
196 |
+
self.skip_list = skip
|
197 |
+
|
198 |
+
def include(self, tag: str):
|
199 |
+
return PromptBuilder(prompts=[
|
200 |
+
(tag_list + [tag], negative_list, add_suggestions_later(suggestions(), tag, 1, self.samples, self.min_posts, self.rating))
|
201 |
+
for (tag_list, negative_list, suggestions) in self.prompts
|
202 |
+
], samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
|
203 |
+
|
204 |
+
def focus(self, tag: str):
|
205 |
+
return PromptBuilder(prompts=[
|
206 |
+
(tag_list, negative_list, add_suggestions_later(suggestions(), tag, 1, self.samples, self.min_posts, self.rating))
|
207 |
+
for (tag_list, negative_list, suggestions) in self.prompts
|
208 |
+
], samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
|
209 |
+
|
210 |
+
def exclude(self, tag: str):
|
211 |
+
return PromptBuilder(prompts=[
|
212 |
+
(tag_list, negative_list + [tag], add_suggestions_later(suggestions(), tag, -1, self.samples, self.min_posts, self.rating))
|
213 |
+
for (tag_list, negative_list, suggestions) in self.prompts
|
214 |
+
], samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
|
215 |
+
|
216 |
+
def avoid(self, tag: str):
|
217 |
+
return PromptBuilder(prompts=[
|
218 |
+
(tag_list, negative_list, add_suggestions_later(suggestions(), tag, -1, self.samples, self.min_posts, self.rating))
|
219 |
+
for (tag_list, negative_list, suggestions) in self.prompts
|
220 |
+
], samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
|
221 |
+
|
222 |
+
def pick(self, category: int, count: int, from_top: int):
|
223 |
+
new_prompts = self.prompts
|
224 |
+
for _ in range(count):
|
225 |
+
new_prompts = [
|
226 |
+
(tag_list + [tag], negative_list, add_suggestions_later(s, tag, 1, self.samples, self.min_posts, self.rating))
|
227 |
+
for (tag_list, negative_list, suggestions) in new_prompts
|
228 |
+
for s in (suggestions(),)
|
229 |
+
for tag in pick_tags(s, category, 1, from_top, tag_list + negative_list + self.skip_list)
|
230 |
+
]
|
231 |
+
return PromptBuilder(new_prompts, samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
|
232 |
+
|
233 |
+
def foreach_pick(self, category: int, count: int, from_top: int):
|
234 |
+
return PromptBuilder(prompts=[
|
235 |
+
(tag_list + [tag], negative_list, add_suggestions_later(s, tag, 1, self.samples, self.min_posts, self.rating))
|
236 |
+
for (tag_list, negative_list, suggestions) in self.prompts
|
237 |
+
for s in (suggestions(),)
|
238 |
+
for tag in pick_tags(s, category, count, from_top, tag_list + negative_list + self.skip_list)
|
239 |
+
], samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
|
240 |
+
|
241 |
+
def pick_fast(self, category: int, count: int, from_top: int):
|
242 |
+
prompts = []
|
243 |
+
for (tag_list, negative_list, suggestions) in self.prompts:
|
244 |
+
s = suggestions()
|
245 |
+
new_tags = pick_tags(s, category, count, from_top, tag_list + negative_list + self.skip_list)
|
246 |
+
prompts.append((tag_list + new_tags, negative_list, add_suggestions_later(s, new_tags, 1, self.samples, self.min_posts, self.rating)))
|
247 |
+
return PromptBuilder(prompts=prompts, samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
|
248 |
+
|
249 |
+
def branch(self, count: int):
|
250 |
+
return PromptBuilder(prompts=[prompt for prompt in self.prompts for _ in range(count)], samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
|
251 |
+
|
252 |
+
def build(self):
|
253 |
+
for (tag_list, negative_list, _) in self.prompts:
|
254 |
+
positive_prompt = ", ".join([ tag_to_prompt(tag) for tag in tag_list])
|
255 |
+
negative_prompt = ", ".join([ tag_to_prompt(tag) for tag in negative_list])
|
256 |
+
if negative_prompt:
|
257 |
+
yield f"{positive_prompt}\nNegative prompt: {negative_prompt}"
|
258 |
+
else:
|
259 |
+
yield positive_prompt
|
260 |
+
|
261 |
+
def print(self):
|
262 |
+
for prompt in self.build():
|
263 |
+
print(prompt)
|
264 |
+
|
265 |
+
def get_one(self):
|
266 |
+
for prompt in self.build():
|
267 |
+
return prompt
|