SrujayReddy31 commited on
Commit
b5473c5
·
verified ·
1 Parent(s): 29cf9dd

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +6 -5
  2. app.py +87 -0
  3. requirements.txt +7 -0
README.md CHANGED
@@ -1,12 +1,13 @@
1
  ---
2
- title: CSC502 MIMIC4RAG
3
- emoji: 🐨
4
- colorFrom: yellow
5
- colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 5.3.0
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: CSC502 MLTC
3
+ emoji: 🚀
4
+ colorFrom: pink
5
+ colorTo: green
6
  sdk: gradio
7
+ sdk_version: 4.29.0
8
  app_file: app.py
9
  pinned: false
10
+ license: apache-2.0
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from torch import nn
4
+ from transformers import BertTokenizer, BertModel
5
+
6
+ # Define the BertClassifier class
7
+ class BertClassifier(nn.Module):
8
+ def __init__(self, bert: BertModel, num_classes: int):
9
+ super().__init__()
10
+ self.bert = bert
11
+ self.classifier = nn.Linear(bert.config.hidden_size, num_classes)
12
+ self.criterion = nn.BCELoss()
13
+
14
+ def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, labels=None):
15
+ outputs = self.bert(
16
+ input_ids=input_ids,
17
+ attention_mask=attention_mask,
18
+ token_type_ids=token_type_ids,
19
+ position_ids=position_ids,
20
+ head_mask=head_mask
21
+ )
22
+ cls_output = outputs.pooler_output
23
+ cls_output = self.classifier(cls_output)
24
+ cls_output = torch.sigmoid(cls_output)
25
+
26
+ loss = 0
27
+ if labels is not None:
28
+ loss = self.criterion(cls_output, labels)
29
+ return loss, cls_output
30
+
31
+ # Load the tokenizer and model
32
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
33
+ bert_model = BertModel.from_pretrained('bert-base-uncased')
34
+ model = BertClassifier(bert_model, num_classes=7)
35
+
36
+ # Load the model weights from the .pkl file
37
+ model.load_state_dict(torch.load('bert_classifier_mltc.pkl', map_location=torch.device('cpu')))
38
+ model.eval()
39
+
40
+ # Define prediction function
41
+ def predict(text):
42
+ tokens = tokenizer.encode(text, add_special_tokens=True, max_length=512, truncation=True)
43
+ input_ids = torch.tensor([tokens])
44
+ mask = (input_ids != tokenizer.pad_token_id).float()
45
+
46
+ with torch.no_grad():
47
+ _, outputs = model(input_ids, attention_mask=mask)
48
+
49
+ # Assuming outputs[0] contains the probability scores for each class
50
+ confidence_scores = outputs[0].tolist()
51
+
52
+ # Convert to a dictionary mapping labels to confidence scores
53
+ labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate', 'clean']
54
+ prediction = {label: score for label, score in zip(labels, confidence_scores)}
55
+
56
+ return prediction
57
+
58
+ # Add example texts
59
+ examples = [
60
+ ["This is a positive and friendly comment."],
61
+ ["I'm not happy with your service."],
62
+ ["You are a great person!"],
63
+ ["How can one defame someone who thinks the Fort Hood Shooting is justified by God's law?"],
64
+ ["A Bisexual, like a homosexual or a heterosexual, is not defined by sexual activity. (Much like a 15 year old boy who is attracted to a girl sexually but has never had sex is still straight). A person who is actually sexually attracted/aroused by the same sex as well as the opposite sex is bisexual."],
65
+ ["I'LL SAY NIGGER IF I WANT TO BRO"],
66
+ ["Do you need a verifiable source for that statement? Check your own user page you fat, miserable balding fuck."],
67
+ ["Fuck you bitch! I will go to your house and kill you with my gun as well! Prepare to die!"],
68
+ ["you're hot, i will rape you ;)"],
69
+ ["WOULDN'T BE THE FIRST TIME BITCH. FUCK YOU I'LL FIND OUT WHERE YOU LIVE, SODOMIZE YOUR WIFE AND THEN BURN YOUR HOUSE DOWN. FUCK YOU YOU FUCKING QUEER."],
70
+ ["What a motherfucking piece of crap those fuckheads for blocking us!"],
71
+ ["Get a life you animal fucker. Shut up you fucking nigger. Fuck off and shit your pants full of all the shit you can fill them with. 144.131.176.126"],
72
+ ["HOPE YOUR HEAD GETS CUT OFF AND SOMEONE WIPS THERE ASS WITH IT AND THEN STABS YOU IN YOUR HEART"],
73
+ ["you people are pretty overzealous with this whole free thing. get a fucking life, you fucking niggers !!!23 16!!!"],
74
+ ["Stupid peace of shit stop deleting my stuff asshole go die and fall in a hole go to hell!"],
75
+ ["Bye! Don't look, come or think of comming back! Tosser."]
76
+ ]
77
+ # Create Gradio interface
78
+ iface = gr.Interface(
79
+ fn=predict,
80
+ inputs=gr.Textbox(lines=10, placeholder="Enter a comment here..."),
81
+ outputs=gr.Label(num_top_classes=7),
82
+ examples=examples,
83
+ title="Toxic Comment Classification",
84
+ description="Classify comments into toxic and non-toxic categories using BERT and GNN model.",
85
+ )
86
+
87
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ scikit-learn>=0.24
2
+ scikit-multilearn
3
+ tensorflow>=2.11.0
4
+ torch>=1.9.0
5
+ transformers
6
+ gradio
7
+ huggingface_hub>=0.13.0