Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
from gradio_webrtc import WebRTC, ReplyOnPause, AdditionalOutputs | |
import transformers | |
import numpy as np | |
from twilio.rest import Client | |
import os | |
import torch | |
import librosa | |
pipe = transformers.pipeline( | |
model="fixie-ai/ultravox-v0_5-llama-3_2-1b", | |
trust_remote_code=True, | |
device=torch.device("cuda"), | |
) | |
whisper = transformers.pipeline( | |
model="openai/whisper-large-v3-turbo", device=torch.device("cuda") | |
) | |
account_sid = os.environ.get("TWILIO_ACCOUNT_SID") | |
auth_token = os.environ.get("TWILIO_AUTH_TOKEN") | |
if account_sid and auth_token: | |
client = Client(account_sid, auth_token) | |
token = client.tokens.create() | |
rtc_configuration = { | |
"iceServers": token.ice_servers, | |
"iceTransportPolicy": "relay", | |
} | |
else: | |
rtc_configuration = None | |
def transcribe(audio: tuple[int, np.ndarray], transformers_chat: list[dict], conversation: list[dict]): | |
original_sr = audio[0] | |
target_sr = 16000 | |
audio_sr = librosa.resample( | |
audio[1].astype(np.float32) / 32768.0, orig_sr=original_sr, target_sr=target_sr | |
) | |
tf_input = [d for d in transformers_chat] | |
# Generate a response from the pipeline using the audio input | |
output = pipe( | |
{"audio": audio_sr, "turns": tf_input, "sampling_rate": target_sr}, | |
max_new_tokens=512, | |
) | |
# Transcribe the audio using Whisper | |
transcription = whisper({"array": audio_sr.squeeze(), "sampling_rate": target_sr}) | |
# Update both conversation histories | |
conversation.append({"role": "user", "content": transcription["text"]}) | |
conversation.append({"role": "assistant", "content": output}) | |
transformers_chat.append({"role": "user", "content": transcription["text"]}) | |
transformers_chat.append({"role": "assistant", "content": output}) | |
yield AdditionalOutputs(transformers_chat, conversation) | |
def respond_text(user_text: str, transformers_chat: list[dict], conversation: list[dict]): | |
if not user_text.strip(): | |
return transformers_chat, conversation | |
# Append the user message from the textbox | |
conversation.append({"role": "user", "content": user_text}) | |
transformers_chat.append({"role": "user", "content": user_text}) | |
# Generate a response using the pipeline. We assume it can process text input via "text" | |
output = pipe({"text": user_text, "turns": transformers_chat}, max_new_tokens=512) | |
conversation.append({"role": "assistant", "content": output}) | |
transformers_chat.append({"role": "assistant", "content": output}) | |
return transformers_chat, conversation | |
with gr.Blocks() as demo: | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
Talk to Smolvox Smollm2 (Powered by WebRTC ⚡️) | |
</h1> | |
<p style='text-align: center'> | |
Once you grant access to your microphone, you can talk naturally to Ultravox. | |
When you stop talking, the audio will be sent for processing. | |
</p> | |
<p style='text-align: center'> | |
Each conversation is limited to 90 seconds. Once the time limit is up you can rejoin the conversation. | |
</p> | |
""" | |
) | |
# Shared conversation state | |
transformers_chat = gr.State( | |
value=[ | |
{ | |
"role": "system", | |
"content": "You are a friendly and helpful character. You love to answer questions for people.", | |
} | |
] | |
) | |
# Chat transcript at the top | |
transcript = gr.Chatbot(label="Transcript", type="messages") | |
# Lower row: text input and audio input side by side | |
with gr.Row(): | |
with gr.Column(scale=1): | |
text_input = gr.Textbox( | |
placeholder="Type your message here and press Enter...", label="Your Message" | |
) | |
with gr.Column(scale=1): | |
audio = WebRTC( | |
rtc_configuration=rtc_configuration, | |
label="Stream", | |
mode="send", | |
modality="audio", | |
) | |
# Audio stream: process audio when speaking stops. | |
audio.stream( | |
ReplyOnPause(transcribe), | |
inputs=[audio, transformers_chat, transcript], | |
outputs=[audio], | |
time_limit=90, | |
) | |
audio.on_additional_outputs( | |
lambda t, g: (t, g), | |
outputs=[transformers_chat, transcript], | |
queue=False, | |
show_progress="hidden", | |
) | |
# Text input: submit callback when pressing Enter. | |
text_input.submit( | |
respond_text, | |
inputs=[text_input, transformers_chat, transcript], | |
outputs=[transformers_chat, transcript], | |
) | |
# Clear text input after submission. | |
text_input.submit(lambda: "", inputs=[], outputs=[text_input]) | |
if __name__ == "__main__": | |
demo.launch() | |