Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -21,9 +21,7 @@ auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
|
|
21 |
|
22 |
if account_sid and auth_token:
|
23 |
client = Client(account_sid, auth_token)
|
24 |
-
|
25 |
token = client.tokens.create()
|
26 |
-
|
27 |
rtc_configuration = {
|
28 |
"iceServers": token.ice_servers,
|
29 |
"iceTransportPolicy": "relay",
|
@@ -32,11 +30,7 @@ else:
|
|
32 |
rtc_configuration = None
|
33 |
|
34 |
|
35 |
-
def transcribe(
|
36 |
-
audio: tuple[int, np.ndarray],
|
37 |
-
transformers_chat: list[dict],
|
38 |
-
conversation: list[dict],
|
39 |
-
):
|
40 |
original_sr = audio[0]
|
41 |
target_sr = 16000
|
42 |
|
@@ -46,7 +40,7 @@ def transcribe(
|
|
46 |
|
47 |
tf_input = [d for d in transformers_chat]
|
48 |
|
49 |
-
# Generate response from the pipeline using the audio input
|
50 |
output = pipe(
|
51 |
{"audio": audio_sr, "turns": tf_input, "sampling_rate": target_sr},
|
52 |
max_new_tokens=512,
|
@@ -63,21 +57,15 @@ def transcribe(
|
|
63 |
yield AdditionalOutputs(transformers_chat, conversation)
|
64 |
|
65 |
|
66 |
-
def respond_text(
|
67 |
-
user_text: str,
|
68 |
-
transformers_chat: list[dict],
|
69 |
-
conversation: list[dict],
|
70 |
-
):
|
71 |
if not user_text.strip():
|
72 |
-
# Do nothing if the textbox is empty
|
73 |
return transformers_chat, conversation
|
74 |
|
75 |
# Append the user message from the textbox
|
76 |
conversation.append({"role": "user", "content": user_text})
|
77 |
transformers_chat.append({"role": "user", "content": user_text})
|
78 |
|
79 |
-
# Generate a response using the pipeline.
|
80 |
-
# Here we assume the pipeline can also process text input via the "text" key.
|
81 |
output = pipe({"text": user_text, "turns": transformers_chat}, max_new_tokens=512)
|
82 |
|
83 |
conversation.append({"role": "assistant", "content": output})
|
@@ -100,6 +88,7 @@ with gr.Blocks() as demo:
|
|
100 |
</p>
|
101 |
"""
|
102 |
)
|
|
|
103 |
# Shared conversation state
|
104 |
transformers_chat = gr.State(
|
105 |
value=[
|
@@ -110,9 +99,12 @@ with gr.Blocks() as demo:
|
|
110 |
]
|
111 |
)
|
112 |
|
|
|
|
|
|
|
|
|
113 |
with gr.Row():
|
114 |
with gr.Column(scale=1):
|
115 |
-
transcript = gr.Chatbot(label="Transcript", type="messages")
|
116 |
text_input = gr.Textbox(
|
117 |
placeholder="Type your message here...", label="Your Message"
|
118 |
)
|
@@ -125,7 +117,7 @@ with gr.Blocks() as demo:
|
|
125 |
modality="audio",
|
126 |
)
|
127 |
|
128 |
-
# Audio stream:
|
129 |
audio.stream(
|
130 |
ReplyOnPause(transcribe),
|
131 |
inputs=[audio, transformers_chat, transcript],
|
@@ -139,13 +131,13 @@ with gr.Blocks() as demo:
|
|
139 |
show_progress="hidden",
|
140 |
)
|
141 |
|
142 |
-
# Text input:
|
143 |
send_button.click(
|
144 |
respond_text,
|
145 |
inputs=[text_input, transformers_chat, transcript],
|
146 |
outputs=[transformers_chat, transcript],
|
147 |
)
|
148 |
-
#
|
149 |
send_button.click(lambda: "", inputs=[], outputs=[text_input])
|
150 |
|
151 |
if __name__ == "__main__":
|
|
|
21 |
|
22 |
if account_sid and auth_token:
|
23 |
client = Client(account_sid, auth_token)
|
|
|
24 |
token = client.tokens.create()
|
|
|
25 |
rtc_configuration = {
|
26 |
"iceServers": token.ice_servers,
|
27 |
"iceTransportPolicy": "relay",
|
|
|
30 |
rtc_configuration = None
|
31 |
|
32 |
|
33 |
+
def transcribe(audio: tuple[int, np.ndarray], transformers_chat: list[dict], conversation: list[dict]):
|
|
|
|
|
|
|
|
|
34 |
original_sr = audio[0]
|
35 |
target_sr = 16000
|
36 |
|
|
|
40 |
|
41 |
tf_input = [d for d in transformers_chat]
|
42 |
|
43 |
+
# Generate a response from the pipeline using the audio input
|
44 |
output = pipe(
|
45 |
{"audio": audio_sr, "turns": tf_input, "sampling_rate": target_sr},
|
46 |
max_new_tokens=512,
|
|
|
57 |
yield AdditionalOutputs(transformers_chat, conversation)
|
58 |
|
59 |
|
60 |
+
def respond_text(user_text: str, transformers_chat: list[dict], conversation: list[dict]):
|
|
|
|
|
|
|
|
|
61 |
if not user_text.strip():
|
|
|
62 |
return transformers_chat, conversation
|
63 |
|
64 |
# Append the user message from the textbox
|
65 |
conversation.append({"role": "user", "content": user_text})
|
66 |
transformers_chat.append({"role": "user", "content": user_text})
|
67 |
|
68 |
+
# Generate a response using the pipeline. We assume it can process text input via "text"
|
|
|
69 |
output = pipe({"text": user_text, "turns": transformers_chat}, max_new_tokens=512)
|
70 |
|
71 |
conversation.append({"role": "assistant", "content": output})
|
|
|
88 |
</p>
|
89 |
"""
|
90 |
)
|
91 |
+
|
92 |
# Shared conversation state
|
93 |
transformers_chat = gr.State(
|
94 |
value=[
|
|
|
99 |
]
|
100 |
)
|
101 |
|
102 |
+
# Chat transcript on top
|
103 |
+
transcript = gr.Chatbot(label="Transcript", type="messages")
|
104 |
+
|
105 |
+
# Lower row with text input and audio input side by side
|
106 |
with gr.Row():
|
107 |
with gr.Column(scale=1):
|
|
|
108 |
text_input = gr.Textbox(
|
109 |
placeholder="Type your message here...", label="Your Message"
|
110 |
)
|
|
|
117 |
modality="audio",
|
118 |
)
|
119 |
|
120 |
+
# Audio stream: process audio when speaking stops.
|
121 |
audio.stream(
|
122 |
ReplyOnPause(transcribe),
|
123 |
inputs=[audio, transformers_chat, transcript],
|
|
|
131 |
show_progress="hidden",
|
132 |
)
|
133 |
|
134 |
+
# Text input: process the typed message when "Send" is clicked.
|
135 |
send_button.click(
|
136 |
respond_text,
|
137 |
inputs=[text_input, transformers_chat, transcript],
|
138 |
outputs=[transformers_chat, transcript],
|
139 |
)
|
140 |
+
# Clear text input after sending.
|
141 |
send_button.click(lambda: "", inputs=[], outputs=[text_input])
|
142 |
|
143 |
if __name__ == "__main__":
|