File size: 3,068 Bytes
d347764
 
 
 
 
e1e6bb7
d347764
 
 
 
 
 
 
 
9428350
d347764
9428350
e1e6bb7
d347764
9428350
 
d347764
 
 
9428350
d347764
 
 
 
9428350
 
 
c022e43
594c7cc
9428350
 
 
d347764
 
 
 
a57914c
d347764
 
 
 
 
f805e49
 
c6f1d54
 
f805e49
 
 
 
f424f82
 
 
 
 
 
 
 
 
 
 
 
594c7cc
f424f82
 
 
82a1991
 
 
f424f82
 
 
82a1991
9a22fd3
f424f82
 
c737803
7b8d763
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset

from transformers import VitsModel, VitsTokenizer, pipeline


device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)

# load text-to-speech checkpoint and speaker embeddings
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")

model = VitsModel.from_pretrained("facebook/mms-tts-por").to(device)
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-por")

# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
# speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)


def translate(audio):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "pt"})
    return outputs["text"]


def synthesise(text):
    inputs = tokenizer(text=text, return_tensors="pt")

    with torch.no_grad():
        output = model(**inputs)
        output = output.waveform[0]
    # inputs = processor(text=text, return_tensors="pt")
    # speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
    return output.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    print(translated_text)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:

![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with gr.Blocks() as demo:

    # with gr.Row():
    #     audio_in = gr.Microphone(label="Input audio", type="filepath")
    #     audio_out = gr.Audio(label="Output audio", type="numpy", autoplay=True)

    
    # audio_in.stop_recording(speech_to_speech_translation, inputs=[audio_in], outputs=[audio_out]) 
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()