import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import VitsModel, AutoTokenizer, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) # load text-to-speech checkpoint and speaker embeddings # processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = VitsModel.from_pretrained("facebook/mms-tts-por").to(device) tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-por") # embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") # speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "pt"}) return outputs["text"] def synthesise(text): inputs = tokenizer(text=text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform # inputs = processor(text=text, return_tensors="pt") # speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) return output.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ # mic_translate = gr.Interface( # fn=speech_to_speech_translation, # inputs=gr.Audio(source="microphone", type="filepath"), # outputs=gr.Audio(label="Generated Speech", type="numpy"), # title=title, # description=description, # ) # file_translate = gr.Interface( # fn=speech_to_speech_translation, # inputs=gr.Audio(source="upload", type="filepath"), # outputs=gr.Audio(label="Generated Speech", type="numpy"), # examples=[["./example.wav"]], # title=title, # description=description, # ) with gr.Blocks() as demo: with gr.Row(): audio_in = gr.Microphone(label="Input audio", type="filepath") audio_out = gr.Audio(label="Output audio", type="numpy", autoplay=True) audio_in.stop_recording(speech_to_speech_translation, inputs=[audio_in], outputs=[audio_out]) # gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()