File size: 9,164 Bytes
4bd62d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import uuid
import requests
from PIL import Image
import numpy as np
import gradio as gr
from encoder import FashionCLIPEncoder

# Constants
REQUESTS_HEADERS = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
BATCH_SIZE = 30  # Define batch size for processing

# Initialize encoder
encoder = FashionCLIPEncoder()

# Helper function to download images
def download_image_as_pil(url: str, timeout: int = 10) -> Image.Image:
    try:
        response = requests.get(url, stream=True, headers=REQUESTS_HEADERS, timeout=timeout)
        if response.status_code == 200:
            return Image.open(response.raw).convert("RGB")  # Ensure consistent format
        return None
    except Exception as e:
        print(f"Error downloading image: {e}")
        return None

# Embedding function for a batch of images
def batch_process_images(image_urls: str):
    # Split the input string by commas and strip whitespace
    urls = [url.strip() for url in image_urls.split(",") if url.strip()]
    
    if not urls:
        return {"error": "No valid image URLs provided."}

    results = []
    batch_urls, batch_images = [], []

    for url in urls:
        try:
            # Download image
            image = download_image_as_pil(url)
            if not image:
                results.append({"image_url": url, "error": "Failed to download image"})
                continue

            batch_urls.append(url)
            batch_images.append(image)

            # Process batch when reaching batch size
            if len(batch_images) == BATCH_SIZE:
                process_batch(batch_urls, batch_images, results)
                batch_urls, batch_images = [], []

        except Exception as e:
            results.append({"image_url": url, "error": str(e)})

    # Process remaining images in the last batch
    if batch_images:
        process_batch(batch_urls, batch_images, results)

    return results


# Helper function to process a batch
def process_batch(batch_urls, batch_images, results):
    try:
        # Generate embeddings
        embeddings = encoder.encode_images(batch_images)
        
        for url, embedding in zip(batch_urls, embeddings):
            # Normalize embedding
            embedding_normalized = embedding / np.linalg.norm(embedding)
            
            # Append results
            results.append({
                "image_url": url,
                "embedding_preview": embedding_normalized[:5].tolist(),  # First 5 values for preview
                "success": True
            })
    except Exception as e:
        for url in batch_urls:
            results.append({"image_url": url, "error": str(e)})


# Gradio Interface
iface = gr.Interface(
    fn=batch_process_images,
    inputs=gr.Textbox(
        lines=5,
        placeholder="Enter image URLs separated by commas",
        label="Batch Image URLs",
    ),
    outputs=gr.JSON(label="Embedding Results"),
    title="Batch Fashion CLIP Embedding API",
    description="Enter multiple image URLs (separated by commas) to generate embeddings for the batch. Each embedding preview includes the first 5 values.",
    examples=[
        ["https://cdn.shopify.com/s/files/1/0522/2239/4534/files/CT21355-22_1024x1024.webp, https://cdn.shopify.com/s/files/1/0522/2239/4534/files/00907857-C6B0-4D2A-8AEA-688BDE1E67D7_1024x1024.jpg"]
    ],
)

# Launch Gradio App
if __name__ == "__main__":
    iface.launch()


# import os
# import requests
# from PIL import Image
# import numpy as np
# from encoder import FashionCLIPEncoder
# from pinecone import Pinecone
# from dotenv import load_dotenv

# # Load environment variables
# load_dotenv()

# # Constants
# PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
# PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME")
# REQUESTS_HEADERS = {
#     'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
# }
# BATCH_SIZE = 30  # Define batch size for processing

# # Ensure API key and index name are set
# if not PINECONE_API_KEY or not PINECONE_INDEX_NAME:
#     raise ValueError("PINECONE_API_KEY and PINECONE_INDEX_NAME must be set in environment variables.")

# # Initialize Pinecone
# pc = Pinecone(api_key=PINECONE_API_KEY)

# # Connect to the existing index
# if PINECONE_INDEX_NAME not in pc.list_indexes().names():
#     raise ValueError(f"Index '{PINECONE_INDEX_NAME}' does not exist. Please create it in your Pinecone account.")

# index = pc.Index(PINECONE_INDEX_NAME)
# print(f"Connected to Pinecone index '{PINECONE_INDEX_NAME}'.")

# # Initialize encoder
# encoder = FashionCLIPEncoder()

# # Helper function to download images
# def download_image_as_pil(url: str, timeout: int = 10) -> Image.Image:
#     """
#     Downloads an image from a URL and converts it to a PIL Image in RGB format.
#     """
#     try:
#         response = requests.get(url, stream=True, headers=REQUESTS_HEADERS, timeout=timeout)
#         if response.status_code == 200:
#             return Image.open(response.raw).convert("RGB")  # Ensure consistent format
#         return None
#     except Exception as e:
#         print(f"Error downloading image from {url}: {e}")
#         return None

# # Function to process a batch of images
# def batch_process_images(image_data: list, namespace: str = None):
#     """
#     Processes a batch of images, generates embeddings, and uploads them to Pinecone.

#     Args:
#         image_data (list): A list of dictionaries with "id" and "url" keys.
#         namespace (str): Namespace for the Pinecone index.

#     Returns:
#         list: A list of results containing the embedding preview or error information.
#     """
#     results = []
#     batch_ids, batch_urls, batch_images = [], [], []

#     for data in image_data:
#         try:
#             image_id = data["id"]
#             image_url = data["url"]

#             # Download the image
#             image = download_image_as_pil(image_url)
#             if not image:
#                 results.append({"id": image_id, "url": image_url, "error": "Failed to download image"})
#                 continue

#             batch_ids.append(image_id)
#             batch_urls.append(image_url)
#             batch_images.append(image)

#             # Process batch when reaching batch size
#             if len(batch_images) == BATCH_SIZE:
#                 process_batch(batch_ids, batch_urls, batch_images, results, namespace)
#                 batch_ids, batch_urls, batch_images = [], [], []

#         except Exception as e:
#             results.append({"id": data.get("id"), "url": data.get("url"), "error": str(e)})

#     # Process remaining images in the last batch
#     if batch_images:
#         process_batch(batch_ids, batch_urls, batch_images, results, namespace)

#     return results

# # Function to process a batch and upload to Pinecone
# def process_batch(batch_ids, batch_urls, batch_images, results, namespace):
#     """
#     Processes a batch of images and generates embeddings, uploading them to Pinecone.

#     Args:
#         batch_ids (list): List of IDs for the images.
#         batch_urls (list): List of image URLs.
#         batch_images (list): List of PIL images.
#         results (list): List to store results for each image.
#         namespace (str): Namespace for the Pinecone index.
#     """
#     try:
#         # Generate embeddings
#         embeddings = encoder.encode_images(batch_images)
        
#         vectors = []
#         for image_id, url, embedding in zip(batch_ids, batch_urls, embeddings):
#             # Normalize embedding
#             embedding_normalized = embedding / np.linalg.norm(embedding)
            
#             # Append results
#             result = {
#                 "id": image_id,
#                 "url": url,
#                 "embedding_preview": embedding_normalized[:5].tolist(),  # First 5 values for preview
#                 "success": True
#             }
#             results.append(result)

#             # Prepare vector for upserting
#             vectors.append({
#                 "id": str(image_id),
#                 "values": embedding_normalized.tolist(),
#                 "metadata": {"url": url}
#             })

#         # Upload vectors to Pinecone
#         index.upsert(vectors=vectors, namespace=namespace)
#     except Exception as e:
#         for image_id, url in zip(batch_ids, batch_urls):
#             results.append({"id": image_id, "url": url, "error": str(e)})

# # Example usage
# if __name__ == "__main__":
#     # Example input data
#     image_data = [
#         {"id": "1", "url": "https://cdn.shopify.com/s/files/1/0522/2239/4534/files/CT21355-22_1024x1024.webp"},
#         {"id": "2", "url": "https://cdn.shopify.com/s/files/1/0522/2239/4534/files/00907857-C6B0-4D2A-8AEA-688BDE1E67D7_1024x1024.jpg"}
#     ]

#     # Process images and upload to Pinecone under namespace "ns1"
#     results = batch_process_images(image_data, namespace="ns1")

#     # Print results
#     for result in results:
#         print(result)