File size: 2,757 Bytes
159fca3
 
 
 
 
 
 
 
 
 
e27c656
 
159fca3
e27c656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159fca3
 
 
 
 
e27c656
159fca3
e27c656
 
159fca3
 
e27c656
 
159fca3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import gradio as gr
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
from PIL import Image
import requests
import torch

# Load the FashionCLIP processor and model
processor = AutoProcessor.from_pretrained("patrickjohncyh/fashion-clip")
model = AutoModelForZeroShotImageClassification.from_pretrained("patrickjohncyh/fashion-clip")

# Define the function to process both text and image inputs
def generate_embeddings(input_text=None, input_image_url=None):
    try:
        if input_image_url:
            # Process image with accompanying text
            response = requests.get(input_image_url, stream=True)
            response.raise_for_status()
            image = Image.open(response.raw)

            # Use a default text if none is provided
            if not input_text:
                input_text = "this is an image"

            # Prepare inputs for the model
            inputs = processor(
                text=[input_text],
                images=image,
                return_tensors="pt",
                padding=True
            )

            with torch.no_grad():
                outputs = model(**inputs)

            image_embedding = outputs.logits_per_image.cpu().numpy().tolist()
            return {
                "type": "image_embedding",
                "input_image_url": input_image_url,
                "input_text": input_text,
                "embedding": image_embedding
            }

        elif input_text:
            # Process text input only
            inputs = processor(
                text=[input_text],
                images=None,
                return_tensors="pt",
                padding=True
            )
            with torch.no_grad():
                outputs = model(**inputs)

            text_embedding = outputs.logits_per_text.cpu().numpy().tolist()
            return {
                "type": "text_embedding",
                "input_text": input_text,
                "embedding": text_embedding
            }
        else:
            return {"error": "Please provide either a text query or an image URL."}

    except Exception as e:
        return {"error": str(e)}

# Create the Gradio interface
interface = gr.Interface(
    fn=generate_embeddings,
    inputs=[
        gr.Textbox(label="Text Query (Optional)", placeholder="e.g., red dress (used with image or for text embedding)"),
        gr.Textbox(label="Image URL", placeholder="e.g., https://example.com/image.jpg (used with or without text query)")
    ],
    outputs="json",
    title="FashionCLIP Combined Embedding API",
    description="Provide a text query and/or an image URL to compute embeddings for vector search."
)

# Launch the app
if __name__ == "__main__":
    interface.launch()