File size: 3,493 Bytes
0116945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import uuid
import requests
from PIL import Image
import numpy as np
import gradio as gr
from encoder import FashionCLIPEncoder

# Constants
REQUESTS_HEADERS = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
BATCH_SIZE = 30  # Define batch size for processing

# Initialize encoder
encoder = FashionCLIPEncoder()

# Helper function to download images
def download_image_as_pil(url: str, timeout: int = 10) -> Image.Image:
    try:
        response = requests.get(url, stream=True, headers=REQUESTS_HEADERS, timeout=timeout)
        if response.status_code == 200:
            return Image.open(response.raw).convert("RGB")  # Ensure consistent format
        return None
    except Exception as e:
        print(f"Error downloading image: {e}")
        return None

# Embedding function for a batch of images
def batch_process_images(image_urls: str):
    # Split the input string by commas and strip whitespace
    urls = [url.strip() for url in image_urls.split(",") if url.strip()]
    
    if not urls:
        return {"error": "No valid image URLs provided."}

    results = []
    batch_urls, batch_images = [], []

    for url in urls:
        try:
            # Download image
            image = download_image_as_pil(url)
            if not image:
                results.append({"image_url": url, "error": "Failed to download image"})
                continue

            batch_urls.append(url)
            batch_images.append(image)

            # Process batch when reaching batch size
            if len(batch_images) == BATCH_SIZE:
                process_batch(batch_urls, batch_images, results)
                batch_urls, batch_images = [], []

        except Exception as e:
            results.append({"image_url": url, "error": str(e)})

    # Process remaining images in the last batch
    if batch_images:
        process_batch(batch_urls, batch_images, results)

    return results


# Helper function to process a batch
def process_batch(batch_urls, batch_images, results):
    try:
        # Generate embeddings
        embeddings = encoder.encode_images(batch_images)
        
        for url, embedding in zip(batch_urls, embeddings):
            # Normalize embedding
            embedding_normalized = embedding / np.linalg.norm(embedding)
            
            # Append results
            results.append({
                "image_url": url,
                "embedding_preview": embedding_normalized[:5].tolist(),  # First 5 values for preview
                "success": True
            })
    except Exception as e:
        for url in batch_urls:
            results.append({"image_url": url, "error": str(e)})


# Gradio Interface
iface = gr.Interface(
    fn=batch_process_images,
    inputs=gr.Textbox(
        lines=5,
        placeholder="Enter image URLs separated by commas",
        label="Batch Image URLs",
    ),
    outputs=gr.JSON(label="Embedding Results"),
    title="Batch Fashion CLIP Embedding API",
    description="Enter multiple image URLs (separated by commas) to generate embeddings for the batch. Each embedding preview includes the first 5 values.",
    examples=[
        ["https://cdn.shopify.com/s/files/1/0522/2239/4534/files/CT21355-22_1024x1024.webp, https://cdn.shopify.com/s/files/1/0522/2239/4534/files/00907857-C6B0-4D2A-8AEA-688BDE1E67D7_1024x1024.jpg"]
    ],
)

# Launch Gradio App
if __name__ == "__main__":
    iface.launch()