Spaces:
Sleeping
Sleeping
import gradio as gr | |
import random | |
from transformers import AutoTokenizer | |
from huggingface_hub import login, logout | |
from markupsafe import escape | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from fractions import Fraction | |
def random_light_color(): | |
"""Generates a random light color with black text.""" | |
return f"hsl({random.randint(0, 360)}, 100%, 80%)" | |
def utf8_tokens(tokens): | |
"""Generates UTF-8 token representations with valid Unicode for each token.""" | |
utf8_representation = [] | |
for token in tokens: | |
try: | |
utf8_bytes = token.encode('utf-8') | |
utf8_hex = " ".join([f"<0x{byte:02X}>" for byte in utf8_bytes]) | |
unicode_token = utf8_bytes.decode('utf-8') | |
utf8_representation.append( | |
f'<span style="background-color:{random_light_color()}; color: black;">{escape(unicode_token)} {utf8_hex}</span>' | |
) | |
except UnicodeDecodeError: | |
utf8_representation.append( | |
f'<span style="background-color:{random_light_color()}; color: brown;">{escape(token)} {utf8_hex}</span>' | |
) | |
return " ".join(utf8_representation) | |
def tokenize_text(tokenizer_name_1, tokenizer_name_2, text, hf_token=None): | |
def tokenize_with_model(tokenizer_name): | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_auth_token=hf_token) | |
tokens = tokenizer.tokenize(text) | |
word_count = len(text.split()) | |
token_count = len(tokens) | |
ratio_simplified = f"{Fraction(word_count, token_count).numerator}/{Fraction(word_count, token_count).denominator}" if token_count > 0 else "N/A" | |
colored_tokens = [ | |
f'<span style="background-color:{random_light_color()}; color: black;">{escape(token)}</span>' for token in tokens | |
] | |
tokenized_text = " ".join(colored_tokens) | |
utf8_representation = utf8_tokens(tokens) | |
return tokenized_text, token_count, word_count, ratio_simplified, utf8_representation | |
except Exception as e: | |
return f"Error loading tokenizer {tokenizer_name}: {str(e)}", 0, 0, "N/A", "" | |
if hf_token: | |
login(hf_token) | |
tokenizer_1_output = tokenize_with_model(tokenizer_name_1) | |
tokenizer_2_output = tokenize_with_model(tokenizer_name_2) | |
try: | |
logout() | |
except Exception as err: | |
pass | |
return ( | |
f"<p><strong>Tokenizer 1:</strong><br>{tokenizer_1_output[0]}</p>", | |
f"Tokenizer 1 - Total tokens: {tokenizer_1_output[1]}, Total words: {tokenizer_1_output[2]}, Word/Token ratio: {tokenizer_1_output[3]}", | |
f"<p>{tokenizer_1_output[4]}</p>", | |
f"<p><strong>Tokenizer 2:</strong><br>{tokenizer_2_output[0]}</p>", | |
f"Tokenizer 2 - Total tokens: {tokenizer_2_output[1]}, Total words: {tokenizer_2_output[2]}, Word/Token ratio: {tokenizer_2_output[3]}", | |
f"<p>{tokenizer_2_output[4]}</p>" | |
) | |
def fill_example_text(example_text): | |
"""Fills the textbox with the selected example.""" | |
return example_text | |
examples = { | |
"Example 1 (en)": "Hugging Face's tokenizers are really cool!", | |
"Example 2 (en)": "Gradio makes building UIs so easy and intuitive.", | |
"Example 3 (en)": "Machine learning models often require extensive training data.", | |
"Example 4 (ta)": "விரைவு பழுப்பு நரி சோம்பேறி நாய் மீது குதிக்கிறது", | |
"Example 5 (si)": "ඉක්මන් දුඹුරු නරියා කම්මැලි බල්ලා උඩින් පනියි" | |
} | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
tokenizer_search_1 = HuggingfaceHubSearch( | |
label="Search Huggingface Hub for Tokenizer 1", | |
placeholder="Search for Tokenizer 1", | |
search_type="model" | |
) | |
with gr.Column(): | |
tokenizer_search_2 = HuggingfaceHubSearch( | |
label="Search Huggingface Hub for Tokenizer 2", | |
placeholder="Search for Tokenizer 2", | |
search_type="model" | |
) | |
example_dropdown = gr.Dropdown(label="Select Example", choices=list(examples.keys()), value="Example 1") | |
input_text = gr.Textbox(label="Input Text", lines=5) | |
with gr.Accordion("Hugging Face Token (Optional)", open=False): | |
hf_token = gr.Textbox(label="Hugging Face Token", placeholder="Enter HF token if needed for private tokenizers") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### Tokenizer 1 Outputs") | |
tokenized_output_1 = gr.HTML(label="Tokenizer 1 - Tokenized Text") | |
token_count_label_1 = gr.Label(label="Tokenizer 1 - Token Count and Word Count") | |
with gr.Accordion("Tokenizer 1 - UTF-8 Decoded Text", open=False): | |
utf8_output_1 = gr.HTML(label="Tokenizer 1 - UTF-8 Decoded Text") | |
with gr.Column(): | |
gr.Markdown("### Tokenizer 2 Outputs") | |
tokenized_output_2 = gr.HTML(label="Tokenizer 2 - Tokenized Text") | |
token_count_label_2 = gr.Label(label="Tokenizer 2 - Token Count and Word Count") | |
with gr.Accordion("Tokenizer 2 - UTF-8 Decoded Text", open=False): | |
utf8_output_2 = gr.HTML(label="Tokenizer 2 - UTF-8 Decoded Text") | |
example_dropdown.change(fn=lambda x: fill_example_text(examples[x]), inputs=example_dropdown, outputs=input_text) | |
input_text.change(tokenize_text, | |
inputs=[tokenizer_search_1, tokenizer_search_2, input_text, hf_token], | |
outputs=[tokenized_output_1, token_count_label_1, utf8_output_1, tokenized_output_2, token_count_label_2, utf8_output_2]) | |
tokenizer_search_1.change(tokenize_text, | |
inputs=[tokenizer_search_1, tokenizer_search_2, input_text, hf_token], | |
outputs=[tokenized_output_1, token_count_label_1, utf8_output_1, tokenized_output_2, token_count_label_2, utf8_output_2]) | |
tokenizer_search_2.change(tokenize_text, | |
inputs=[tokenizer_search_1, tokenizer_search_2, input_text, hf_token], | |
outputs=[tokenized_output_1, token_count_label_1, utf8_output_1, tokenized_output_2, token_count_label_2, utf8_output_2]) | |
demo.launch() | |