import gradio as gr import random from transformers import AutoTokenizer from huggingface_hub import login, logout from markupsafe import escape from gradio_huggingfacehub_search import HuggingfaceHubSearch from fractions import Fraction def random_light_color(): """Generates a random light color with black text.""" return f"hsl({random.randint(0, 360)}, 100%, 80%)" def utf8_tokens(tokens): """Generates UTF-8 token representations with valid Unicode for each token.""" utf8_representation = [] for token in tokens: try: utf8_bytes = token.encode('utf-8') utf8_hex = " ".join([f"<0x{byte:02X}>" for byte in utf8_bytes]) unicode_token = utf8_bytes.decode('utf-8') utf8_representation.append( f'{escape(unicode_token)} {utf8_hex}' ) except UnicodeDecodeError: utf8_representation.append( f'{escape(token)} {utf8_hex}' ) return " ".join(utf8_representation) def tokenize_text(tokenizer_name_1, tokenizer_name_2, text, hf_token=None): def tokenize_with_model(tokenizer_name): try: tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_auth_token=hf_token) tokens = tokenizer.tokenize(text) word_count = len(text.split()) token_count = len(tokens) ratio_simplified = f"{Fraction(word_count, token_count).numerator}/{Fraction(word_count, token_count).denominator}" if token_count > 0 else "N/A" colored_tokens = [ f'{escape(token)}' for token in tokens ] tokenized_text = " ".join(colored_tokens) utf8_representation = utf8_tokens(tokens) return tokenized_text, token_count, word_count, ratio_simplified, utf8_representation except Exception as e: return f"Error loading tokenizer {tokenizer_name}: {str(e)}", 0, 0, "N/A", "" if hf_token: login(hf_token) tokenizer_1_output = tokenize_with_model(tokenizer_name_1) tokenizer_2_output = tokenize_with_model(tokenizer_name_2) try: logout() except Exception as err: pass return ( f"
Tokenizer 1:
{tokenizer_1_output[0]}
{tokenizer_1_output[4]}
", f"Tokenizer 2:
{tokenizer_2_output[0]}
{tokenizer_2_output[4]}
" ) def fill_example_text(example_text): """Fills the textbox with the selected example.""" return example_text examples = { "Example 1 (en)": "Hugging Face's tokenizers are really cool!", "Example 2 (en)": "Gradio makes building UIs so easy and intuitive.", "Example 3 (en)": "Machine learning models often require extensive training data.", "Example 4 (ta)": "விரைவு பழுப்பு நரி சோம்பேறி நாய் மீது குதிக்கிறது", "Example 5 (si)": "ඉක්මන් දුඹුරු නරියා කම්මැලි බල්ලා උඩින් පනියි" } with gr.Blocks() as demo: with gr.Row(): with gr.Column(): tokenizer_search_1 = HuggingfaceHubSearch( label="Search Huggingface Hub for Tokenizer 1", placeholder="Search for Tokenizer 1", search_type="model" ) with gr.Column(): tokenizer_search_2 = HuggingfaceHubSearch( label="Search Huggingface Hub for Tokenizer 2", placeholder="Search for Tokenizer 2", search_type="model" ) example_dropdown = gr.Dropdown(label="Select Example", choices=list(examples.keys()), value="Example 1") input_text = gr.Textbox(label="Input Text", lines=5) with gr.Accordion("Hugging Face Token (Optional)", open=False): hf_token = gr.Textbox(label="Hugging Face Token", placeholder="Enter HF token if needed for private tokenizers") with gr.Row(): with gr.Column(): gr.Markdown("### Tokenizer 1 Outputs") tokenized_output_1 = gr.HTML(label="Tokenizer 1 - Tokenized Text") token_count_label_1 = gr.Label(label="Tokenizer 1 - Token Count and Word Count") with gr.Accordion("Tokenizer 1 - UTF-8 Decoded Text", open=False): utf8_output_1 = gr.HTML(label="Tokenizer 1 - UTF-8 Decoded Text") with gr.Column(): gr.Markdown("### Tokenizer 2 Outputs") tokenized_output_2 = gr.HTML(label="Tokenizer 2 - Tokenized Text") token_count_label_2 = gr.Label(label="Tokenizer 2 - Token Count and Word Count") with gr.Accordion("Tokenizer 2 - UTF-8 Decoded Text", open=False): utf8_output_2 = gr.HTML(label="Tokenizer 2 - UTF-8 Decoded Text") example_dropdown.change(fn=lambda x: fill_example_text(examples[x]), inputs=example_dropdown, outputs=input_text) input_text.change(tokenize_text, inputs=[tokenizer_search_1, tokenizer_search_2, input_text, hf_token], outputs=[tokenized_output_1, token_count_label_1, utf8_output_1, tokenized_output_2, token_count_label_2, utf8_output_2]) tokenizer_search_1.change(tokenize_text, inputs=[tokenizer_search_1, tokenizer_search_2, input_text, hf_token], outputs=[tokenized_output_1, token_count_label_1, utf8_output_1, tokenized_output_2, token_count_label_2, utf8_output_2]) tokenizer_search_2.change(tokenize_text, inputs=[tokenizer_search_1, tokenizer_search_2, input_text, hf_token], outputs=[tokenized_output_1, token_count_label_1, utf8_output_1, tokenized_output_2, token_count_label_2, utf8_output_2]) demo.launch()